Use this URL to cite or link to this record in EThOS:
Title: Hierarchical and cellular structures in cosmology
Author: Williams, Brian Geoffrey
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 1992
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Though great advances have been made in the field of cosmology by using numerical n-body techniques to investigate large-scale structure formation, these have been hampered by limited dynamic range. Thus there still remains considerable motivation for finding simple methods that link either the final structure or its statistical properties (such as mass and correlation functions) to the initial conditions. This thesis investigates two such approaches - linear theory and the Voronoi foam. (i) Linear Theory This is based on the principle of smoothing the non-linear density field in order to recover the underlying linear density field. Bound objects are then identified with regions where the density exceeds some critical value. Such a prescription allows the statistical properties of the bound objects to be described as a function of the power spectrum of the initial density field and the smoothing function. This thesis checks the accuracy of such models against the adhesion model, a fully non-linear description of gravitational clustering. In order to provide an accurate test of the linear theory predictions, the simulations are carried out in one dimension, where the adhesion model is exact and there is sufficient dynamic range to allow a thorough test of the linear theory predictions. It is found that despite some of the underlying assumptions of linear theory being incorrect in detail, the linear theory mass functions provide an excellent match to those calculated from the simulations. Linear theory correlation functions are also shown to be a good match to those from the simulations, but only in the case where dynamical evolution of the density field is unimportant (i.e. where large-scale power dominates over small-scale power). (ii) Voronoi foam This is a simple model where space is divided into cells, each containing a nucleus, with galaxies populating the boundaries between cells, which are equidistant between neighbouring nuclei. The geometric structure of the cells is entirely determined by the distribution of the nuclei. This forms a continuous network of walls, filaments and nodes, qualitatively similar to that observed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available