Use this URL to cite or link to this record in EThOS:
Title: Macrocyclic complexes of platinum group metals
Author: Roberts, Yvonne V.
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 1991
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
A series of half-sandwich complexes, [M([9]aneS3)*XY]n+ have been synthesised from MCl2 [M = Pd, Pt,X = Y = Cl-(n = 0), PPh30.5dppm, 0.5dppe,0.5x2, 2'-bipy(n = 2), X = Cl-, Y = PPh3(n&61 1); M = Pd, X = Y = 0.5oxytriphos, 0.5x1, 10-phen(n = 2), X = Cl-, Y = PCy3(n = 1)]. All but one of the crystal structures [M = Pd, X = Y = Cl-, PPh3, 0.5dppm, 0.5oxytriphos, 0.5x2,2'-bipy, 0.5x1,10-phen, X = Cl-, Y&61 PPh3; M = Pt, X = Y&61 PPh3, 0.5dppm] solved show the metal in a square-planar, S2XY co-ordination set, with a long-range apical interaction to the remaining S-atom of [9]aneS3; [Pt([9]aneS3)(PPh3)2]2+ is trigonal bipyramidal. The reductive electrochemistry of the Pd complexes shows the stabilisation of Pd(I) species by bidentate, π-acceptor X,Y ligands. A series of complexes [Ru([9]aneS_3)XYZ]^+ (X-Cl^-, Y = CO or PCy_3, Z&61 H or MeCN; X = H, Y = Z = 0.5x1,5-COD) and [Ru([n]aneS_4)*XY]^m+ (X = Cl^-, Y = PPh_3, n = 12,14,16, m&61 1; X = McCN, Y = PPh_3, n = 12,14, m&61 2; X = Y = McCN, n = 16, m = 2) have also been prepared. The crystral structures of [Ru([9]aneS_3)XYZ]^+ (X = Cl^-, Y = CO, Z&61 McCN; X = H, Y = Z = 0.5x1,5-COD) show the metal to be octahedrally co-ordinated. Such is also the case for [Ru([n]aneS_4)XY]^m+ (n = 14,16, X = Cl^-, Y&61 PPh_3; n = 16, X = Y = MeCN), with the non-macrocyclic ligands mutually cis. A study by nmr spectroscopy of the mechanism of formation of [Ru([9]aneS_3)Cl(PPh_3)(C_4H_3O)H^+ ]^- from [Ru([9]aneS_3)Cl_2(PPh_3)] and Et_2O/THF was undertaken. The former complex, and the dimeric intermediates [Ru([9]aneS_3)(PPh_3)Cl]_2^2+ and [Ru([9]aneS_3(PPh_3)(μ2-Cl)Tl(μ3-Cl)]_2^2+ were characterised by X-ray crystallography. Finally, the novel agostic species [Pd(H[9]aneN_3)Cl_2]_2(PF_6)_2.2([Pd(H[9]aneN_3)Cl_2]_2) is described. The X-ray structure of the dimer shows an unsupported Pd-Pd bond with mutally cis-Cl^- ligands. Only one of the two metal ions in the dimer forms an agostic M-H-N bond. The metal in each of the monomers also forms on M-H-N agostic bond. *[9]aneS_3 = 1,4,7-trithiacyclononane, [14]aneS_4 = 1,4,8,11-tetrathiacyclotetradecane [12]aneS_4 = 1,4,7,10-tetrathiacyclododecane, [16]aneS_4 = 1,5,9,13-tetrathiacyclohexadecane.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available