Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.659535
Title: Socio-economic aware data forwarding in mobile sensing networks and systems
Author: Adeel, Usman
ISNI:       0000 0004 5361 4479
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.
Supervisor: McCann, Julie Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.659535  DOI: Not available
Share: