Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658698
Title: On the interaction between embedded planets and the corotation region of protoplanetary discs
Author: Fendyke, Stephen
ISNI:       0000 0004 5355 383X
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Disc material in the corotation region librates with respect to low-mass planets on horseshoe trajectories. The exchange of angular momentum associated with this libration gives rise to the non-linear corotation torque (the horseshoe drag). For the first project described herein, we ran a suite of high-resolution 2D hydrodynamic simulations of low-mass (5 Earth mass) planets, at eccentricities 0 e < 0.3, embedded in both viscous protoplanetary discs with entropy relaxation and inviscid discs without. The attenuation of the corotation torque was obtained from these simulations and found to be well-fitted by an exponential decay with a characteristic ‘e-folding eccentricity’ that scales linearly with disc scale height. These results were tested with different disc scale heights between 0.03 and 0.1 and with a 10 Earth mass planet. In the second project in this thesis we sought to extend on these results by examining the case of an embedded 5 Earth mass planet in three dimensional discs. We found that our scaling relation held in this new case, confirming that it is possible to use 2D simulations with a softening parameter to capture the behaviour of the corotation torque. We investigated the time-averaged horseshoe width as a function of altitude and found that the corotation region extends from the midplane to around three scale heights, changing most near the midplane for eccentric planets. The final project looked at 3D radiative discs, under the influence of stellar irradiation, with more massive embedded planets capable of triggering gap formation. We use the pluto code to simulate a Jupiter mass planet at 5 AU in a protoplanetary disc. We describe our progress in understanding the process of gap formation in a case study of this class of hitherto undescribed disc.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.658698  DOI: Not available
Keywords: Physics and Astronomy ; protoplanetary discs ; Corotation
Share: