Use this URL to cite or link to this record in EThOS:
Title: bHLH and bHLH-LZ factor exchange at promoters
Author: Louphrasitthiphol, Pakavarin
ISNI:       0000 0004 5354 5397
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Mammalian promoters often contain DNA-elements that can be bound by a number of closely related transcription factors (TFs) that cannot bind to the same DNA-element simultaneously. It is possible that each TF responds to distinct cues, allowing the gene to be activated in response to multiple stimuli. An alternative possibility is that each TF binds sequentially, each contributing to the pre-initiation events leading up to transcription. Here, we explore the exchange of basic-Helix-Loop-Helix-Leucine-Zipper (bHLH-LZ) factors, USF1, USF2 and MITF at the TYROSINASE promoter following induction by UVB-irradiation and methotrexate-administration. We demonstrate, for the first time in human melanoma, differential induction kinetics of TYROSINASE gene in response to an initial or re-induction, a phenomenon akin to "transcription memory" previously described in yeast. We also show that USF2, specifically detected by two different antibodies targeting the N-terminal region, is largely cytoplasmic, at least in the cell lines we have investigated. We also showed that nucleo-cytoplasmic shuttling of these USF2 species is partly regulated by glucose. Using deletion mutants, we demonstrated the requirement of the amino-acids surrounding the USF-specific region and the basic domain in nuclear localisation of USF2, and that amino-acids 1−193 appear to enhance dimerization of USF2 in addition to the classical HLH-LZ dimerization domain. We will further investigate the role(s) played by MYC, MITF, HIF and USF exchange at common targets (which we identified through our ChIP-seq analysis) in gene activation and the effect on the (re)activation potential of these genes when DNA-binding by one or more of these factors are abolished, as well as when the promoter is monopolised by one of these factors through overexpression using cell lines expressing one of the bHLH-TFs under a tet-inducible promoter. In the long run, we aim to understand the potential differences in the role(s) of each bHLH-factors co-occupying E-box elements.
Supervisor: Goding, Colin R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Biochemistry ; Bioinformatics (life sciences) ; Biology (medical sciences) ; bHLH ; bHLH-LZ ; HIF-1a ; HIF-2a ; HIF-1b ; Transcription