Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658301
Title: Investigation of the reliability of the encapsulation system of photovoltaic modules
Author: Wu, Dan
ISNI:       0000 0004 5352 8482
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Good reliability of the encapsulation system of Photovoltaic (PV) modules is crucial to ensure the long-term performance of PV modules. A carefully controlled lamination process is required to produce a reliable encapsulation system. To date, the influences of different lamination conditions on the reliability of the encapsulation system are poorly understood. To predict the performance of the encapsulation system, the correlation of the reliability of the encapsulation system with various stress levels is required, which is poorly developed. This thesis improves the understanding of these issues by investigating the correlation of different lamination conditions with the reliability of the encapsulation system and the degradation of adhesion strength under variable damp-heat conditions. The influence of the curing temperature and curing time on the long-term reliability of the encapsulation system is investigated from various viewpoints such as curing level of EVA, chemical and optical stability of EVA and adhesion strength within the encapsulation system. The correlation of curing level and lamination quality has been identified. The effects of over-curing are demonstrated. Results show that the chemical stability, optical stability and the adhesion strength between encapsulant and backsheet increases with the increasing curing level. However, the best long-term adhesion performance at the glass-encapsulant interface is obtained at lower gel content. Too high curing can cause problems of bubble generation, discoloration and unstable interfaces. Among those identified degradation phenomena, interfacial adhesion strength demonstrates the fastest and the largest degradation. The reliability of the adhesion strength is further examined under different stress levels. Among different environmental stress factors, moisture is considered to cause the greatest problems of adhesive interfacial stability. Therefore, the adhesion strength is investigated under different damp-heat conditions. A methodology is developed that can be used to model the adhesion degradation induced by moisture at different humidity and temperature conditions. To do so, a stress model is established which enables quantitative description of the moisture related stresses on PV modules. Based on this model, an exponential correlation is established between the adhesion strength and the humidity and temperature levels. This enables the comparison of adhesion strength of PV modules operating at different humid environments.
Supervisor: Not available Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.658301  DOI: Not available
Keywords: Reliability ; PV modules ; Encapsulation system
Share: