Use this URL to cite or link to this record in EThOS:
Title: On Majorana algebras and representations
Author: Castillo Ramirez, Alonso
ISNI:       0000 0004 5348 722X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The basic concepts of Majorana theory were introduced by A. A. Ivanov (2009) as a tool to examine the subalgebras of the Griess algebra V_M from an elementary axiomatic perspective. A Majorana algebra is a commutative non-associative real algebra generated by a finite set of idempotents, called Majorana axes, that satisfy some properties of Conway's 2A-axes of V_M. If G is a finite group generated by a G-stable set of involutions T, a Majorana representation of (G,T) is an algebra representation of G on a Majorana algebra V together with a compatible bijection between T and a set of Majorana axes of V . Ivanov's definitions were inspired by Sakuma's theorem, which establishes that any two-generated Majorana algebra is isomorphic to one of the Norton-Sakuma algebras. Since then, the construction of Majorana representations of various finite groups has given non-trivial information about the structure of V_M. This thesis concerns two main themes within Majorana theory. The first one is related with the study of some low-dimensional Majorana algebras: the Norton-Sakuma algebras and the Majorana representations of the symmetric group of degree 4 of shapes (2A,3C) and (2B,3C). For each one of these algebras, all the idempotents, automorphism groups, and maximal associative subalgebras are described. The second theme is related with a Majorana representation V of the alternating group of degree 12 generated by 11,880 Majorana axes. In particular, the possible linear relations between the 3A-, 4A-, and 5A-axes of V and the Majorana axes of V are explored. Using the known subalgebras and the inner product structure of V , it is proved that neither sets of 3A-axes nor 4A-axes is contained in the linear span of the Majorana axes. When V is a subalgebra of V_M, these results, enhanced with information about the characters of the Monster group, establish that the dimension of V lies between 3,960 and 4,689.
Supervisor: Ivanov, Alexander Sponsor: Imperial College London ; University of Guadalajara (Mexico)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available