Use this URL to cite or link to this record in EThOS:
Title: Electrochemical performance and compatibility of La2NiO4+δ electrode material with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte for solid oxide electrolysis
Author: Fawcett, Lydia
ISNI:       0000 0004 5348 5507
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) is an oxygen ion conducting electrolyte material widely used in solid oxide fuel cells (SOFC). La2NiO4+δ (LNO) is a mixed ionic-electronic conducting layered perovskite with K2NiF4 type structure which conducts oxygen ions via oxygen interstitials. LNO has shown promising results as an SOFC electrode in the literature. In this work the compatibility and performance of LNO electrodes on the LSGM electrolyte material for solid oxide electrolysis cell (SOEC) is investigated. The materials were characterised as SOEC/SOFC cells by symmetrical and three electrode electrochemical measurements using Electrochemical Impedance Spectroscopy (EIS). Conductivity and ASR values were obtained in the temperature range 300-800°C with varying atmospheres of pH2O and pO2. The cells were also subjected to varied potential bias, mimicking fuel cell or electrolysis use. Enhancement of LNO performance was observed with the application of potential bias in both anodic and cathodic mode of operation in all atmospheres with the exception of cathodic bias in pO2 = 6.5x10-3 atm. In ambient air at 800°C LNO ASRs were 2.82Ω.cm2, 1.83Ω.cm2 and 1.37Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. In low pO2 at 800°C LNO ASRs were 9.17Ω.cm2, 1.74Ω.cm2 and 456.9Ω.cm2 in OCV, +1000mV bias and -1000mV bias respectively. The increase in ASR with negative potential bias in low pO2 is believed to be caused by an increase in mass transport and charge transfer impedance responses. Material stability was confirmed using X-Ray Diffraction (XRD), in-situ high temperature pH2O and pO2 XRD. In-situ XRD displayed single phase materials with no observable reactivity in the conditions tested. Scanning Electron Microscopy images of cells tested by EIS in all atmospheres displayed no microstructure degradation except for those cells tested in a humid atmosphere which display a regular pattern of degradation on the LNO surface attributed to reaction with the Pt mesh current collector.
Supervisor: Skinner, Stephen; Kilner, John Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available