Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656530
Title: Reconfigurable computing for large-scale graph traversal algorithms
Author: Betkaoui, Brahim
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
This thesis proposes a reconfigurable computing approach for supporting parallel processing in large-scale graph traversal algorithms. Our approach is based on a reconfigurable hardware architecture which exploits the capabilities of both FPGAs (Field-Programmable Gate Arrays) and a multi-bank parallel memory subsystem. The proposed methodology to accelerate graph traversal algorithms has been applied to three case studies, revealing that application-specific hardware customisations can benefit performance. A summary of our four contributions is as follows. First, a reconfigurable computing approach to accelerate large-scale graph traversal algorithms. We propose a reconfigurable hardware architecture which decouples computation and communication while keeping multiple memory requests in flight at any given time, taking advantage of the high bandwidth of multi-bank memory subsystems. Second, a demonstration of the effectiveness of our approach through two case studies: the breadth-first search algorithm, and a graphlet counting algorithm from bioinformatics. Both case studies involve graph traversal, but each of them adopts a different graph data representation. Third, a method for using on-chip memory resources in FPGAs to reduce off-chip memory accesses for accelerating graph traversal algorithms, through a case-study of the All-Pairs Shortest-Paths algorithm. This case study has been applied to process human brain network data. Fourth, an evaluation of an approach based on instruction-set extension for FPGA design against many-core GPUs (Graphics Processing Units), based on a set of benchmarks with different memory access characteristics. It is shown that while GPUs excel at streaming applications, the proposed approach can outperform GPUs in applications with poor locality characteristics, such as graph traversal problems.
Supervisor: Luk, Wayne Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.656530  DOI: Not available
Share: