Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656380
Title: Porous melt-derived bioactive glass scaffolds for bone regeneration via gel-cast foaming
Author: Tang, Hok Man
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Scaffolds suitable for trabecular bone regeneration were produced via the gel-cast foaming process using the melt-derived glass composition SBP-3. A problem common to most bioactive glass compositions that undergo sintering in order to achieve scaffold form is that they crystallise, lowering bioactivity as well as incurring mechanical instability of the structure via unpredictable local degradation. The scaffolds did not exhibit significant bulk crystallisation upon sintering and the presence of potassium sodium sulphate crystals were not detected on the surface, which were formed with a previously studied composition ICIE16. The process was then optimised further and up-scaled to produce scaffolds in sufficient quantities for an in vivo ovine condyle defect study (undertaken at University College London by Prof. Allen Goodship and Prof. Gordon Blunn). Despite possessing a relatively high network connectivity - 2.31 - and low bioactivity from SBF studies, results from the in-vivo study concluded that the SBP-3 scaffolds performed better than the original 45S5 Bioglass granules, displaying 99 % bone aposition over a period of 91 days, in addition to the new bone more closely resembling the trabecular bone structure. Work was then carried out to simplify the process, switching from a chemical polymerisation process to a thermal gelation process, thus allowing for greater optimisation of the process.
Supervisor: Jones, Julian Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.656380  DOI: Not available
Share: