Use this URL to cite or link to this record in EThOS:
Title: An investigation of the diagnostic potential of autofluorescence lifetime spectroscopy and imaging for label-free contrast of disease
Author: Coda, Sergio
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The work presented in this thesis aimed to study the application of fluorescence lifetime spectroscopy (FLS) and fluorescence lifetime imaging microscopy (FLIM) to investigate their potential for diagnostic contrast of diseased tissue with a particular emphasis on autofluorescence (AF) measurements of gastrointestinal (GI) disease. Initially, an ex vivo study utilising confocal FLIM was undertaken with 420 nm excitation to characterise the fluorescence lifetime (FL) images obtained from 71 GI samples from 35 patients. A significant decrease in FL was observed between normal colon and polyps (p = 0.024), and normal colon and inflammatory bowel disease (IBD) (p = 0.015). Confocal FLIM was also performed on 23 bladder samples. A longer, although not significant, FL for cancer was observed, in paired specimens (n = 5) instilled with a photosensitizer. The first in vivo study was a clinical investigation of skin cancer using a fibre-optic FL spectrofluorometer and involved the interrogation of 27 lesions from 25 patients. A significant decrease in the FL of basal cell carcinomas compared to healthy tissue was observed (p = 0.002) with 445 nm excitation. A novel clinically viable FLS fibre-optic probe was then applied ex vivo to measure 60 samples collected from 23 patients. In a paired analysis of neoplastic polyps and normal colon obtained from the same region of the colon in the same patient (n = 12), a significant decrease in FL was observed (p = 0.021) with 435 nm excitation. In contrast, with 375 nm excitation, the mean FL of IBD specimens (n = 4) was found to be longer than that of normal tissue, although not statistically significant. Finally, the FLS system was applied in vivo in 17 patients, with initial data indicating that 435 nm excitation results in AF lifetimes that are broadly consistent with ex vivo studies, although no diagnostically significant differences were observed in the signals obtained in vivo.
Supervisor: Thillainayagam, Andrew; Dunsby, Chris; French, Paul Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available