Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.656208
Title: There and back again : a stretch receptor's tale
Author: Suslak, Thomas James
ISNI:       0000 0004 5347 8235
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Mechanotransduction is fundamental to many sensory processes, including balance, hearing and motor co-ordination. However, for such an essential feature, the mechanism(s) that underlie it are poorly understood. The mechanotransducing stretch receptors that relay information on the tonicity and length of skeletal muscles have been well-defined, particularly at the gross anatomical level, in a wide variety of species, encompassing both vertebrates and invertebrates. To date, there exists a wealth of data describing them, anatomically, as well as good electrophysiological data from stretch receptors of some larger organisms. However, comparatively few studies have succeeded in identifying putative mechanotransducing molecules in such systems. Nonetheless, this class of sensory mechanotransducers perhaps offer the best means of identifying molecules that permit the stretch-sensitivity of such endings, revealing new information about the underlying mechanisms of stretch receptors, and mechanoreceptors more generally. However, a different approach is clearly needed; a theoretical approach, utilising mathematical modelling, offers a powerful means of pooling the current wealth of knowledge on the reported electrophysiological behaviour of muscle stretch receptors. This study, therefore, develops an extended theoretical model of a stretch receptor system in order to reproduce, in silico, the reported behaviour of both vertebrate and invertebrate stretch receptors, within the same modelling environment, thus enabling the first quantitative framework for comparing these data, and moreover, making predictions of the likely roles of specific molecular entities within a stretch receptor system. Subsequently, this study utilises a model in vivo system to test these theoretical predictions. The genetic toolbox of D. melanogaster offers a wide range of tools that are extremely suitable for identifying mechanotransducing molecules in stretch receptors. However, very little is currently known about such endings in this organism. This study, therefore, firstly characterises a putative stretch receptor organ in larval Drosophila, the dbd neuron, via a novel experimental approach. It is shown that this neuron exhibits known properties of stretch receptors, as previously observed in other, similar organs. Furthermore, these observations bear out the predictions of the mathematical model. Having defined the dbd neuron as a muscle stretch receptor, pharmacological and genetic assays in this system, combined with predictions from the mathematical model, identify a key role for the recently-discovered DmPiezo protein as an amiloride-sensitive, mechanically-gated sodium channel (MNaC) in dbd neurons, with TRPA1 also acting in this system in a supporting role. These data confirm the essential role of an MNaC in mechanosensory systems, but also supply important evidence that, whilst the electrophysiological mechanisms in stretch receptors are remarkably similar across taxa, different species likely employ various molecular mechanisms to achieve this.
Supervisor: Armstrong, Douglas; Jarman, Andrew Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.656208  DOI: Not available
Keywords: Drosophila ; dbd ; muscle spindle ; Piezo ; TRPA1 ; mechanoreceptor ; stretch
Share: