Use this URL to cite or link to this record in EThOS:
Title: Biochar amendment to improve soil productivity with particular emphasis on the influence of soil type
Author: Peake, Lewis
ISNI:       0000 0004 5347 3127
Awarding Body: University of East Anglia
Current Institution: University of East Anglia
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Three experiments were conducted to explore the effects of gasified biochar on contrasting temperate soil types in East Anglia, an agricultural area in eastern England, with a focus on the influence of soil properties. In a laboratory experiment comparing eight dissimilar soil types, adding up to 2.5% biochar improved field capacity by up to 42% (15% on average) and available water capacity by up to 48% (22% on average), but silty soils were less responsive. BD was reduced by up to 19% (10% on average). In a three-season outdoor pot trial with spring wheat (Triticum aestivum), four soil types were treated with biochar (at 0%, 0.1%, 0.5% & 2.5%). Biochar affected crop yield and soil properties, mainly positively, especially pH, CEC, base cations, field capacity, saturated hydraulic conductivity and some micronutrients. Positive yield responses appeared to be predominantly due to the influence of biochar on soil hydrology, increasing water-holding capacity on sandy soils in dry weather, while improving infiltration during excessively wet weather on a silty clay loam. In a trial on three contrasting soils in one field, cropped with winter barley (Hordeum vulgare), biochar (at 0, 50 t ha–1 & 100 t ha–1) had a range of predominantly positive effects. There were no significant increases in crop yield in this well managed agroecosystem, but variables which responded significantly included pH, some nutrients in the soil and in the crop, and grain moisture content. There was also evidence that biochar improved grain quality by reducing grain protein content on sandy soils, and increasing it on loam, keeping it within the tolerable limits of the malting barley industry in both cases. Potentially toxic elements (PTEs) within the barley grain (Zn, Cu, As, Ni, Cd and Cr) were not raised to levels critical to food safety. The overarching conclusion is that soil type, as defined by its physical, chemical and biological characteristics, is highly influential with respect to a range of effects that BC has on soil properties and crop responses, and that such characteristics need not only to be factored into future BC research, but should be the focus of studies aimed at identifying critical threshold values.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available