Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655939
Title: Activation of hydrocarbons and their catalytic oxidation by heterogeneous catalysis
Author: Peneau, Virginie
ISNI:       0000 0004 5368 141X
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The targets of this thesis were the selective oxidation of hydrocarbons under mild conditions, using cheap and environmentally friendly oxidants and initiators. Three projects are treated; the oxidation of an alkane using O2 and a co-oxidant, the oxidation of toluene using TBHP (tert-butyl hydroperoxide) and finally the oxidation of propane using hydrogen peroxide. C-H bond activation, O2 activation and high conversion with high selectivity were essential points to investigate. In the first project, alkane oxidation was studied in presence of a co-oxidant. The co-oxidant has for purpose to initiate the activation of the alkane and O2, as well as prevent the over-oxidation of the alkane. The co-oxidation of octane using benzaldehyde has been investigated using 1 wt. % AuPd/ C catalyst; the hypothesis is that benzaldehyde oxidation would use a radical mechanism able to activate octane to octanol. Also, the coupling of octanol with activated benzaldehyde would prevent the over-oxidation of octanol by the formation of an ester; octylbenzoate. The aim of the second study was to investigate the selective oxidation of toluene using TBHP at 80 °C with supported noble metal nanoparticle catalysts prepared by sol-immobilisation techniques. Au, Pd and Pt have been use to form mono, bi and trimetallic catalysts of different morphology supported on C and TiO2. These catalysts have been tested for toluene oxidation. The catalyst showing the best activity has been used for further investigation such as reuse test, using H2O2 as oxidant or O2 activation. The third project target was to oxidise propane using H2O2 in mild conditions. 2.5 wt. % Fe/ ZSM-5 (30) has been used to investigate reaction conditions in order to optimise the system. This catalyst has been acid treated; standard and treated catalysts were characterised and analysed to identify the structure and active sites. Role of supports and metals (mono and bimetallic) has been explored in order to improve this system.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.655939  DOI: Not available
Keywords: QD Chemistry
Share: