Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655039
Title: Local gradient estimate for porous medium and fast diffusion equations by Martingale method
Author: Zhang, Zichen
ISNI:       0000 0004 5361 4962
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
This thesis focuses on a certain type of nonlinear parabolic partial differential equations, i.e. PME and FDE. Chapter 1 consists of a survey on results related to PME and FDE, and a short review on some works about deriving gradient estimates in probabilistic ways. In Chapter 2 we estimate gradient on space variables of solutions to the heat equation on Euclidean space. The main idea is to construct two semimartingales by letting the solution and its gradient running backward on the path space of a diffusion process. Estimates derived from decompositions of those two semimartingales are then combined to give rise to an upper bound on gradient that only involves the maximum of the initial data and time variable. In particular, it is independent of the dimension. In Chapter 3 we carry the idea in Chapter 2 onto the study of positive solutions to PME or FDE, and obtained a similar type of bound on |∇u| for local solutions to PME or FDE on Euclidean space. In existing literature there have always been constraints on m. By considering a more general form of transformation on u and introducing a family of equivalent measures on path space, we add more flexibility to our method. Thus our result is valid for a larger range of m. For global solutions, when m violates our constraint, we need two-sided bound on u to control |∇u|. In Chapter 4 we utilize maximum principle to derive Li-Yau type gradient estimate for PME on a compact Riemannian manifold with Ricci curvature bounded from below. Our result is able to yield a Harnack inequality possessing the right order in time variable when the lower bound of Ricci curvature is negative.
Supervisor: Qian, Zhongmin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.655039  DOI: Not available
Keywords: Porous medium equation ; Fast diffusion equation ; Martingale ; Curvature-dimension condition ; Aronson-Benilan estimate
Share: