Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655032
Title: Planar heterojunction perovskite solar cells via vapour deposition and solution processing
Author: Liu, Mingzhen
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Hybrid organic-inorganic solar photovoltaic (PV) cells capable of directly converting sunlight to electricity have attracted much attention in recent years. Despite evident technological advancements in the PV industry, the widespread commercialisation of solar cells is still being mired by their low conversion efficiencies and high cost per Watt. Perovskites are an emerging class of semiconductors providing a low-cost alternative to silicon-based photovoltaic cells, which currently dominate the market. This thesis develops a series of studies on “all-solid state perovskite solar cells” fabricated via vapour deposition which is an industrially-accessible technique, to achieve planar heterojunction architectures and efficient PV devices. Chapter 2 presents a general outlook on the operating principles of solar cells, delving deeper into the specific operational mechanism of perovskite solar cells. It also explores the usual methods employed in the fabrication of perovskite thin films. Chapter 3 describes the experimental procedures followed during the fabrication of the individual components constituting the device from the synthesis of the precursors to the construction of the functioning perovskite PV devices. Chapter 4 demonstrates pioneering work involving the dual-source vapour deposition (DSVD) of planar heterojunction perovskite solar cells which generated remarkable power conversion efficiency values surpassing 15%. These significant results pave the way for the mass-production of perovskite PVs. To further expand the range of feasible vapour deposition techniques, a two-layer sequential vapour deposition (SVD) technique is explored in Chapter 5. This chapter focusses on identifying the factors affecting the fundamental properties of the vapour-deposited films. Findings provide an improved understanding of the effects of precursor compositions and annealing conditions on the films. Chapter 5 concludes with a comparison between SVD and DSVD fabricated films, highlighting the benefits of each vapour deposition technique. Furthermore, hysteretic effects are analysed in Chapter 6 for the perovskite PV devices fabricated based on different structural configurations. An interesting discovery involving the temporary functioning of compact layer-free perovskite PV devices suggests the presence of a built-in-field responsible for the hysteresis of the cells. The observations made in this chapter yield a new understanding of the functionality of individual cell layers. Combining the advantages of the optimum vapour deposition technique established in Chapter 4 and Chapter 5, with the enhanced understanding of perovskite PV cell operational mechanism acquired from Chapter 6, an ongoing study on an “all-perovskite” tandem solar cell is introduced in Chapter 7. This demonstration of the “all-perovskite” tandem devices confirms the versatility of perovskites for a broader range of PV applications.
Supervisor: Snaith, Henry; Johnston, Michael Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.655032  DOI: Not available
Keywords: Semiconductor devices ; Condensed Matter Physics ; Semiconductors ; Solar cells ; Perovskite ; Hybrid inorganic-organic ; Vapour deposition ; Solution processing
Share: