Use this URL to cite or link to this record in EThOS:
Title: Topological and emergent phenomena in lattice BKT systems
Author: Faulkner, M.
ISNI:       0000 0004 5359 3575
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis addresses the emergent electrostatics of two-dimensional, toroidal magnetic models that possess XY symmetry, providing a platform for novel investigations into the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The BKT transition drives the thermal dissociation of bound pairs of topological defects in many two-dimensional systems, including the two-dimensional XY model of magnetism. The XY model is closely analogous to the two-dimensional Coulomb gas, but can be simulated without computing the long-range interactions of the Coulombic system. This thesis elucidates this paradox by showing that Villain's approximation to the XY model is strictly equivalent to the Maggs-Rossetto (MR) electrostatic model when applied to the two-dimensional Coulomb gas. The mapping is used to probe the BKT transition through the application of the MR algorithm to the two-dimensional Coulomb gas. By simulating the Coulombic system, fluctuations in the winding of charges around the torus are shown to turn on at the BKT transition temperature. These topological-sector fluctuations in the electric field therefore signal the high-temperature phase of the transition. It is then shown that the effective critical exponent of Bramwell-Holdsworth (BH) theory can be measured in superfluid ⁴He films, which correspond to effective Coulomb gases in the limit of large but finite system size. With the Coulombic system taken as the base BKT system, it is inferred that BH theory is a general property of BKT systems.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available