Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.650701
Title: Robust online subspace learning
Author: Liwicki, Stephan
ISNI:       0000 0004 5357 0912
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
In this thesis, I aim to advance the theories of online non-linear subspace learning through the development of strategies which are both efficient and robust. The use of subspace learning methods is very popular in computer vision and they have been employed to numerous tasks. With the increasing need for real-time applications, the formulation of online (i.e. incremental and real-time) learning methods is a vibrant research field and has received much attention from the research community. A major advantage of incremental systems is that they update the hypothesis during execution, thus allowing for the incorporation of the real data seen in the testing phase. Tracking acts as an attractive and popular evaluation tool for incremental systems, and thus, the connection between online learning and adaptive tracking is seen commonly in the literature. The proposed system in this thesis facilitates learning from noisy input data, e.g. caused by occlusions, casted shadows and pose variations, that are challenging problems in general tracking frameworks. First, a fast and robust alternative to standard L2-norm principal component analysis (PCA) is introduced, which I coin Euler PCA (e-PCA). The formulation of e-PCA is based on robust, non-linear kernel PCA (KPCA) with a cosine-based kernel function that is expressed via an explicit feature space. When applied to tracking, face reconstruction and background modeling, promising results are achieved. In the second part, the problem of matching vectors of 3D rotations is explicitly targeted. A novel distance which is robust for 3D rotations is introduced, and formulated as a kernel function. The kernel leads to a new representation of 3D rotations, the full-angle quaternion (FAQ) representation. Finally, I propose 3D object recognition from point clouds, and object tracking with color values using FAQs. A domain-specific kernel function designed for visual data is then presented. KPCA with Krein space kernels is introduced, as this kernel is indefinite, and an exact incremental learning framework for the new kernel is developed. In a tracker framework, the presented online learning outperforms the competitors in nine popular and challenging video sequences. In the final part, the generalized eigenvalue problem is studied. Specifically, incremental slow feature analysis (SFA) with indefinite kernels is proposed, and applied to temporal video segmentation and tracking with change detection. As online SFA allows for drift detection, further improvements are achieved in the evaluation of the tracking task.
Supervisor: Pantic, Maja Sponsor: Engineering and Physical Sciences Research Council ; Intel
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.650701  DOI: Not available
Share: