Use this URL to cite or link to this record in EThOS:
Title: Molecular analysis of chromosome 11 rearrangements in human aniridia
Author: Danes, Sarah
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 1996
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The cause of the disease in two familial and two sporadic cases of aniridia associated with chromosome 11 rearrangements has been analysed. Since the rearrangements apparently leave the PAX6 gene intact, a cosmid contig encompassing PAX6 was assembled and facilitated mapping of the four breakpoints. All were found to lie distal of PAX6 at distances of between 20 and 150kb beyond the 3' end of the gene. Phenotypically these patients are indistinguishable from other aniridia cases, suggesting the involvement of PAX6 haploinsufficiency. The site of the most distal breakpoint has been defined by isolating chromosome 11 fragments which cross it. These fragments contain regions of conservation between species and sequencing reveals potential open reading frames, raising questions about the function of the likely gene at this position. A possible position effect mechanism involving disconnection of PAX6 from adjacent control elements has been explored. These elements may be locus-specific or more general chromatin organising elements and may be detected by DNaseI hypersensitive site mapping in appropriate cell types. Cell lines which appeared suitable for this purpose have been characterised. An alternative possibility involves disturbance of PAX6 expression by the incoming chromosomal region in each rearrangement, through an inappropriate chromatin conformation or the presence of negative control elements. The detailed physical map generated for the aniridia-associated breakpoint region will allow further exploration of the position effect mechanism. These aniridia-associated rearrangements contribute to a growing list of possible position effect cases in humans and other mammals. Extensive study of position effects in fruit flies and yeast shows that gene inactivation can result from a switch in chromatin environment between euchromatin and heterochromatin. In humans, the phenomenon of position effect may also involve disturbing the usual chromatin environment of a gene, reflecting the heterogeneity of the human genome in terms of chromatin structure and transcriptional permissiveness.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available