Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647897
Title: Component mode synthesis for ship structures : investigation into an alternative approach
Author: Zoet, Petrus Gosse
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The main aim of this work is to help the shipbuilder to effectively assess a ships' structural design for its vibratory behaviour. For that purpose state of the art structural modelling techniques are reviewed for the validity of their basic principles, accuracy, practicality and required computation time when applied on typical marine structures. Full finite element modelling has been applied on a part of the structure of an LNG carrier on board which the author has taken vibration and noise measurements. Also fixed interface (Craig-Bampton) and free interface (Rubin's method) component mode synthesis sub structuring techniques have been applied. The aim of the analysis is to evaluate the effectiveness of finite element modelling through evaluation with measurement results, evaluate the accuracy of the sub structuring modelling techniques and to identify short comings of any of the tested methods. Two alternative component synthesis modelling sub structuring techniques are proposed in order to reduce required computation time; Zoet's method and the Rubin Zoet method. The Zoet method is tested using a section of the LNG carrier's structural model. The method is evaluated for accuracy (comparing obtained results with the results obtained through the full harmonic finite element analysis) and required computation time through comparison with the required computation time for: - full harmonic analysis - the classical modal reduction and mode superposition technique - the classical Rubin free interface component mode synthesis - and Rubin's method with interface reduction according to the IRS method (see section 6.5.3) - the Rubin-Zoet technique.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647897  DOI: Not available
Share: