Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647655
Title: Robust indoor positioning with lifelong learning
Author: Xiao, Zhuoling
ISNI:       0000 0004 5367 8325
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Indoor tracking and navigation is a fundamental need for pervasive and context-aware applications. However, no practical and reliable indoor positioning solution is available at present. The major challenge of a practical solution lies in the fact that only the existing devices and infrastructure can be utilized to achieve high positioning accuracy. This thesis presents a robust indoor positioning system with the lifelong learning ability. The typical features of the proposed solution is low-cost, accurate, robust, and scalable. This system only takes the floor plan and the existing devices, e.g. phones, pads, etc. and infrastructure such as WiFi/BLE access points for the sake of practicality. This system has four closely correlated components including, non-line-of-sight identification and mitigation (NIMIT), robust pedestrian dead reckoning (R-PDR), lightweight map matching (MapCraft), and lifelong learning. NIMIT projects the received signal strength (RSS) from WiFi/BLE to locations. The R-PDR component converts the data from inertial measurement unit (IMU) sensors ubiquitous in mobile devices and wearables to the trajectories of the user. Then MapCraft fuses trajectories estimated from the R-PDR and the coarse location information from NIMIT with the floor plan and provides accurate location estimations. The lifelong learning component then learns the various parameters used in all other three components in an unsupervised manner, which continuously improves the the positioning accuracy of the system. Extensive real world experiments in multiple sites show how the proposed system outperforms state-of-the art approaches, demonstrating excellent sub-meter positioning accuracy and accurate reconstruction of tortuous trajectories with zero training effort. As proof of its robustness, we also demonstrate how it is able to accurately track the position regardless of the users, devices, attachments, and environments. We believe that such an accurate and robust approach will enable always-on background localization, enabling a new era of location-aware applications to be developed.
Supervisor: Trigoni, Niki Sponsor: China Scholarship Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647655  DOI: Not available
Keywords: Applications and algorithms ; Software engineering ; Sensors ; Robotics ; positioning ; dead reckoning ; pattern matching ; lifelong learning
Share: