Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647547
Title: Dissecting human haematopoietic progenitors
Author: Samitsch, Marina
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Human haematopoiesis resembles a complex hierarchy, however most intermediate stages are only poorly defined. Efforts to characterise human progenitors have been inconsistent and failed to integrate previous knowledge. Furthermore, characterisation of normal progenitors has important implications in acute myeloid leukaemia (AML) biology. We previously established that leukaemic stem cells (LSCs) resemble the immunophenotypic progenitor compartments more closely than the stem cell fraction. Therefore, I set out to characterise human stem and progenitor cells (HSCPs) on phenotypic, molecular and functional level to complete the picture of human haematopoiesis. I purified HSPCs based on their immunophenotype from adult bone marrow (BM) and umbilical cord blood (CB) to investigate steady state and neonatal haematopoiesis. To define differentiation potentials, HSPCs were subjected to functional in vitro assays on bulk and clonal level. Limit dilution assays were used to determine the frequency of cells with multiple differentiation potentials. RNA sequencing revealed underlying lineage priming and specific gene expression signatures. I successfully characterized the incompletely defined Lin-CD34+CD38-CD45RA+ fraction in BM and CB, containing a CD10lo lymphoid-primed multipotent progenitor (LMPP) with T cell, B cell, NK cell, granulocytic and monocytic differentiation potential, and succeeded in placing it in the haematopoietic hierarchy with relation to similar lympho-myeloid progenitors defined by other groups. This research lays the foundation to characterise early human progenitors with a comprehensive toolkit on a phenotypic, molecular and functional level. Findings from this thesis might provide knowledge about potential targets in LSCs.
Supervisor: Vyas, Paresh Sponsor: Celgene International Sarl
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647547  DOI: Not available
Keywords: Haematology ; Medical sciences ; Biomedical Sciences ; Haematopoiesis ; Stem Cell Research ; blood stem cells ; haematopoietic progenitors
Share: