Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647375
Title: Sustainable production of biofuel from microalgae grown in wastewater
Author: Osundeko, Olumayowa
ISNI:       0000 0004 5366 5743
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Algae have been the centre of recent research as a sustainable feedstock for fuel because of their higher oil yield in comparison to other plant sources. However, algae biofuel still performs poorly from an economic and environmental perspective due to the high reliance on freshwater and nutrients for cultivation, among other challenges. The use of wastewater has been suggested as a sustainable way of overcoming these challenges because wastewater can provide a source of water and nutrients for the algae. Moreover, the ability of the algae to remove contaminants from wastewater also enhances the total economic output from the cultivation. However, the success of this strategy still depends greatly on efficient strain selection, cultivation and harvesting. Therefore, this PhD thesis has focussed on strain isolation, characterisation, optimisation and cultivation in open pond systems. Five algae strains were isolated from wastewater treatment tanks at a municipal water treatment plant in North West England. The isolated strains were morphologically and genetically characterised as green single-celled microalgae: Chlamydomonas debaryana, Hindakia tetrachotoma, Chlorella luteoviridis, Parachlorella hussii and Desmodesmus subspicatus. An initial screening of these strains concluded that C. luteoviridis and P. hussii were outstanding in all comparisons and better than some of the strains previously reported in the literature. Further tests carried out to elucidate the underlying tolerance mechanisms possessed by these strains were based on stress tolerance and acclimation hypotheses. In the following experiments, C. luteoviridis and P. hussii were found to have higher anti-oxidant enzyme activity that helps in scavenging reactive oxygen species produced as a result of exposure to wastewater. This result provides a new argument for screening microalgae strains for wastewater cultivation on the basis of anti-oxidant activity. In addition, the two strains could grow heterotrophically and are better adapted to nutrient deficiency stress than the other three isolates. In order to understand the role of microalgae acclimation in wastewater cultivation, strains identical or equivalent to the wastewater treatment tank isolates were obtained from an algae culture collection. These strains had not been previously exposed to wastewater secondary effluent. The initial growth of these strains in wastewater secondary effluent was very poor. However, after two months of acclimation to increasing concentrations of secondary wastewater effluent, it was observed that growth, biomass and lipid productivities of most of the strains were significantly improved, although still not as high as the indigenous strains. Therefore, it was concluded that continuous acclimation is an additional factor to the successful growth of algae in wastewater. Furthermore, addition of 25% activated sludge centrate liquor to the secondary effluent was found to increase algal growth and biomass productivity significantly. Futher tests to examine the continous cultivation of C. luteoviridis and P. hussii in wastewater showed that a biomas productivity of 1.78 and 1.83 g L-1 d-1 can be achieved on a continual basis. Finally, the capability of C. luteoviridis and P. hussii for full seasonal cultivation in a 150 L open pond in a temperate climate was studied, using the optimised secondary wastewater +25% liquor medium. Each strain was capable of growth all year including in autumn and winter but with strongest growth, productivity and remediation characteristics in the summer and spring. They could maintain monoculture growth with no significant contamination or culture crash, demonstrating the robustness of these strains for wastewater cultivation in a northern European climate.
Supervisor: Pittman, Jon Sponsor: BBSRC ; Sustainable Consumption Institute Manchester
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647375  DOI: Not available
Keywords: biofuel, biomass, algae, biodiesel, wastewater, remediation, microalgae ; lipid, plant, sustainable, oxidative stress, nutrient stress, acclimation, adaptation, open pond, cultivation, nitrogen, ammonium, phosphorus, phosphate
Share: