Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647253
Title: Free boundary problems in a Hele-Shaw cell
Author: Khalid, A. H.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The motion of a free boundary separating two immiscible fluids in an unbounded Hele-Shaw cell is considered. In the one-phase problem, a viscous fluid is separated from an inviscid fluid by a simple closed boundary. Preliminaries for a complex variable technique are presented by which the one-phase problem can be solved explicitly via conformal mappings. The Schwarz function of the boundary plays a major role giving rise to the so called Schwarz function equation which governs the evolution of exact solutions. The Schwarz function approach is used to study the stability of a translating elliptical bubble due to a uniform background flow, and the stability of a blob (or bubble) subject to an external electric field. The one-phase problem of a translating free boundary and of a free boundary subject to an external field are studied numerically. A boundary integral method is formulated in the complex plane by considering the Cauchy integral formula and the complex velocity of a fluid particle on the free boundary. In the case of a free boundary subject to an external electric field due to a point charge, it is demonstrated that a stable steady state is achieved for appropriate charge strength. The method is also employed to study breakup of a single translating bubble in which the Schwarz function singularities (shown to be stationary) of the initial boundary play an important role. The two-phase problem is also considered, where the free boundary now separates two viscous fluids, and the construction of exact solutions is studied. The one-phase numerical model is enhanced, where a boundary integral method is formulated to accommodate the variable pressure in both viscous phases. Some numerical experiments are presented with a comparison to analytical results, in particular for the case where the free boundary is driven by a uniform background flow.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647253  DOI: Not available
Share: