Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.647240
Title: Investigation of shadow matching for GNSS positioning in urban canyons
Author: Wang, L.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
All travel behavior of people in urban areas relies on knowing their position. Obtaining position has become increasingly easier thanks to the vast popularity of ‘smart’ mobile devices. The main and most accurate positioning technique used in these devices is global navigation satellite systems (GNSS). However, the poor performance of GNSS user equipment in urban canyons is a well-known problem and it is particularly inaccurate in the cross-street direction. The accuracy in this direction greatly affects many applications, including vehicle lane identification and high-accuracy pedestrian navigation. Shadow matching is a new technique that helps solve this problem by integrating GNSS constellation geometries and information derived from 3D models of buildings. This study brings the shadow matching principle from a simple mathematical model, through experimental proof of concept, system design and demonstration, algorithm redesign, comprehensive experimental tests, real-time demonstration and feasibility assessment, to a workable positioning solution. In this thesis, GNSS performance in urban canyons is numerically evaluated using 3D models. Then, a generic two-phase 6-step shadow matching system is proposed, implemented and tested against both geodetic and smartphone-grade GNSS receivers. A Bayesian technique-based shadow matching is proposed to account for NLOS and diffracted signal reception. A particle filter is designed to enable multi-epoch kinematic positioning. Finally, shadow matching is adapted and implemented as a mobile application (app), with feasibility assessment conducted. Results from the investigation confirm that conventional ranging-based GNSS is not adequate for reliable urban positioning. The designed shadow matching positioning system is demonstrated complementary to conventional GNSS in improving urban positioning accuracy. Each of the three generations of shadow matching algorithm is demonstrated to provide better positioning performance, supported by comprehensive experiments. In summary, shadow matching has been demonstrated to significantly improve urban positioning accuracy; it shows great potential to revolutionize urban positioning from street level to lane level, and possibly meter level.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.647240  DOI: Not available
Share: