Use this URL to cite or link to this record in EThOS:
Title: Supply side optimisation in online display advertising
Author: Yuan, S.
ISNI:       0000 0004 5365 7233
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
On the Internet there are publishers (the supply side) who provide free contents (e.g., news) and services (e.g., email) to attract users. Publishers get paid by selling ad displaying opportunities (i.e., impressions) to advertisers. Advertisers then sell products to users who are converted by ads. Better supply side revenue allows more free content and services to be created, thus, benefiting the entire online advertising ecosystem. This thesis addresses several optimisation problems for the supply side. When a publisher creates an ad-supported website, he needs to decide the percentage of ads first. The thesis reports a large-scale empirical study of Internet ad density over past seven years, then presents a model that includes many factors, especially the competition among similar publishers, and gives an optimal dynamic ad density that generates the maximum revenue over time. This study also unveils the tragedy of the commons in online advertising where users' attention has been overgrazed which results in a global sub-optimum. After deciding the ad density, the publisher retrieves ads from various sources, including contracts, ad networks, and ad exchanges. This forms an exploration-exploitation problem when ad sources are typically unknown before trail. This problem is modelled using Partially Observable Markov Decision Process (POMDP), and the exploration efficiency is increased by utilising the correlation of ads. The proposed method reports 23.4% better than the best performing baseline in the real-world data based experiments. Since some ad networks allow (or expect) an input of keywords, the thesis also presents an adaptive keyword extraction system using BM25F algorithm and the multi-armed bandits model. This system has been tested by a domain service provider in crowdsourcing based experiments. If the publisher selects a Real-Time Bidding (RTB) ad source, he can use reserve price to manipulate auctions for better payoff. This thesis proposes a simplified game model that considers the competition between seller and buyer to be one-shot instead of repeated and gives heuristics that can be easily implemented. The model has been evaluated in a production environment and reported 12.3% average increase of revenue. The documentation of a prototype system for reserve price optimisation is also presented in the appendix of the thesis.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available