Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646916
Title: Solution processed metal oxide microelectronics : from materials to devices
Author: Thomas, Stuart R.
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Owing to their many interesting characteristics, the application of metal oxide based electronics has been growing at a considerable rate for the past ten years. High performance, optical transparency, chemical stability and suitability toward low cost deposition methods make them well suited to a number of new and interesting application areas which conventional materials such as silicon, or more recently organic materials, are unable to satisfy. The work presented in this thesis is focussed on the optimisation of high performance metal oxide based electronics combined with use of spray pyrolysis, as a low cost deposition method. The findings presented here are split into three main areas, starting with an initial discussion on the physical and electronic properties of films deposited by spray pyrolysis. The results demonstrate a number of deposition criteria that aid in the optimisation and fabrication of high performance zinc oxide (ZnO) based thin-film transistors (TFTs) with charge carrier mobilities as high a 20 cm2/Vs. Solution processed gallium oxide TFTs with charge carrier mobilities of ~0.5 cm2/Vs are also demonstrated, highlighting the flexibility of the deposition method. The second part of the work explores the use of facile chemical doping methods suitable for spray pyrolysed ZnO based TFTs. By blending different precursor materials in solution prior to deposition, it has been possible to adjust certain material characteristics, and in turn device performance. Through the addition of lithium it has been possible alter the films grain structure, leading to significantly improved charge carrier mobilities as high as ~54 cm2/Vs. Additionally the inclusion of beryllium during film deposition has been demonstrated to control TFT threshold voltages, leading to improved integrated circuit performance. The final segment of work demonstrates the flexibility of spray pyrolysis through the deposition of a number of high-k dielectric materials. These high performance dielectrics are integrated into the fabrication of TFTs already benefiting from the findings of the previously discussed work, leading to highly optimised low-voltage TFTs. The performance of these devices represent some of best currently available from solution processed ZnO TFTs with charge carrier mobilities as high as 85 cm2/Vs operating at 3.5 V.
Supervisor: Anthopoulos, Thomas D. Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.646916  DOI: Not available
Share: