Use this URL to cite or link to this record in EThOS:
Title: Investigating the role of the lens in the growth and development of the vertebrate eye
Author: Walker, Heather Mhairi
ISNI:       0000 0004 5360 5476
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The eye forms through complex tissue interactions, and it still only partly understood. The developing vertebrate lens however, is crucial for coordinating eye development and eye growth, through releasing signals to surrounding eye structures. It is thought that the lens controls the growth of the eye through the production of the vitreous- the jelly-like substance that fills the main cavity of the eye and maintains the eye in its correct shape. Many components of the vitreous are produced by a region of the peripheral retina known as the ciliary body, and so it is believed that the lens controls eye growth through controlling the development of the ciliary body and thus, indirectly, the vitreous. This project addresses this concept. I have identified a previously unknown functional link between the lens and Vitamin A metabolism. The lens is important for maintaining retinoic acid production within the developing chick eye through controlling the expression of RDH10 in the presumptive ciliary body. RDH10 is important for the first step in retinoic acid synthesis, the conversion of Vitamin A into retinal, which is then converted into retinoic acid. The loss of RDH10 within the presumptive ciliary body is associated with a reduction in expression of other genes known to be involved in ciliary body development, BMP7, WNT2B and OTX1 along with a reduction in the growth of the eye. The reduction in retinoic acid production within the eye as a result of lens removal, in turn affects the synthesis of Collagen IX from the ciliary body, a major component of the vitreous. The data suggests that the lens controls retinoic acid production within the eye, through maintaining gene expression in the developing ciliary body. Retinoic acid signalling controls the synthesis of components of the vitreous, such as Collagen IX. The proper accumulation of the vitreous within the eye is crucial for the correct growth of the chick eye.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Crystalline lens ; Eye