Use this URL to cite or link to this record in EThOS:
Title: The influence of coastal upwelling on the biodiversity of sandy beaches in South Africa
Author: Cramb, Pamela Helen
ISNI:       0000 0004 5358 9621
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Sandy beaches are often highly allochthonous, depending on external subsidies of carbon and nutrients. Despite this, sandy beach macrofaunal assemblages have received little attention regarding their response to enhanced primary productivity generated from coastal upwelling. This thesis investigates the influence of upwelling on macrofaunal assemblages over a variety of spatial and temporal scales. Spatially, four regions were examined across two biogeographic provinces to remove temperature as a confounding factor, and limit biogeography-specific effects. A nested hierarchical design enabled both large and small scales to be examined and generalities about upwelling effects across multiple areas to be considered. Sampling was conducted in two seasons, and over two years, to test the persistence of any effects. Biogeography and region had the strongest influences on macrofaunal biodiversity. Upwelling influenced macrofaunal assemblages in every region when analyses were conducted at the species level. However, the particular effect, positive or negative, differed among regions depending on local factors, and between the response variables, abundance and biomass. Coarser scales of taxonomy, feeding guild and developmental mode were investigated; however, the influence of upwelling generally became weaker and more varied, and occasionally disappeared. Seasonality was greater on the South Coast but was still important in some analyses on the West Coast. At the small-scale, variation within-beaches was lower than between beaches, assemblage structure remained stable over time, and consistent zonation was not present. The influence of temperature on filtration rate and oxygen consumption of Donax serra was investigated to test a driving mechanism for assemblage responses to upwelling. Feeding ability was significantly reduced at colder temperatures indicating an important factor which may be involved in determining assemblage structure. These results suggest that alterations to upwelling regimes predicted under climate change scenarios will impact sandy beach macrofauna, however the specific outcome will depend on multiple contextual factors.
Supervisor: Paterson, David M.; McQuaid, C. D. Sponsor: University of St Andrews ; Andrew Mellon Foundation ; South African Research Chairs Initiative of the Department of Science and Technology ; National Research Foundation (South Africa)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Multiple scales ; Biogeography ; Taxonomic resolution ; Feeding guild ; Developmental mode ; Macrofauna ; Climate change ; Benguela ; Agulhas