Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.644684
Title: Unnatural amino acids as metal-mediated probes of biological function
Author: Bhushan, Bhaskar
ISNI:       0000 0004 5356 9268
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Conjugation reactions on proteins have been used to access various post-translational modifications, for targeted delivery of drugs, for microscopy, and in studying receptor-ligand interactions. However, the ability to modify native proteins is constrained by the reactive functionalities of naturally occurring amino acids. This has driven research into the incorporation of unnatural amino acids (UAAs) into proteins. Research in this area has been motivated both by the possibility of increasing the breadth of chemical techniques for protein modification by introducing novel 'bio-orthogonal' reactive groups via UAA incorporation, as well as generating well-defined conjugates by the site-selective incorporation of these UAAs into proteins. The objective of this thesis is to both expand the diversity of UAAs for access to new metal-mediated reactions on proteins, as well as to utilise these reactions to reveal functional information about a range of biological systems. A brief introduction into current protein conjugation and UAA incorporation methods will be made in Chapter 1. In Chapter 2, the genetic incorporation of alkene-bearing UAAs into recombinant proteins expressed in both bacterial and mammalian systems is discussed. This technique is demonstrated to enable Ru-catalysed olefin cross-metathesis (CM) reactions on the resultant proteins. This work builds upon previously established methods to chemically incorporate CM handles onto proteins. The rational design of UAAs, as well as assays and modelling studies to screen them for recognition by the cellular incorporation machinery are discussed in detail. The expression of a range of alkene-tagged recombinant proteins, their complete characterisation, as well as the development of a more general protocol for on-protein CM is elucidated. In Chapter 3, the utility of UAA incorporation to probe mammalian cell translation systems is examined. Incorporation of an azide-bearing UAA, in addition to heavy stable-isotope labelled amino acids is used to uncover a previously unreported system of protein synthesis in mammalian cell nuclei, along with rapid metabolic degradation of the synthesised peptides. Various orthogonal methods for the detection of this system as well as possible reasons for its conservation are discussed. In Chapter 4, UAA incorporation and metal-mediated bioconjugation reactions are utilised in the development of a novel and generally applicable proteomics technique. This technique is used to determine quantitative changes in cell proteomes in response to external stimuli, and may be applied to systems to which traditional proteomics techniques cannot, such as ex vivo primary cells. Finally, in Chapter 5, further applications of UAA incorporation are discussed. Preliminary results are reported in efforts to use UAAs in the vibrational Raman microscopic imaging of biological systems, in generating HIV vaccines, and inducing T-cell stimulation.
Supervisor: Davis, Benjamin G. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.644684  DOI: Not available
Keywords: Chemistry & allied sciences ; Chemical biology ; Protein chemistry ; Polymers Amino acid and peptide chemistry ; Microscopy ; Mass spectrometry ; unnatural amino acids ; proteomics
Share: