Use this URL to cite or link to this record in EThOS:
Title: Exploiting C. elegans to investigate the key combinatorial toxicology associated with the marine environment in the proximity of Jeddah City in the Red Sea
Author: Sahl, Yaser
ISNI:       0000 0004 5352 6081
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
The interface between urban combinations and associated industry with fragile ecosystems delivering significant ecosystem services denotes one of the critical frontiers for ecological genomic investigation. The major issue when evaluating diffuse pollution generated at this interface revolves around the possible interactions between mixtures of contaminates that individually remain below trigger level but together may result in significant environmental impact. To determine whether mixture effects need to be considered, it is essential to define geochemical parameters by performing a survey for major classes of contaminates and to evaluate their penetrance into the food chain. The coastal marine environment of the Saudi Red Sea is subject to direct and indirect influences of major populations and industrial facilities found along the coast such as those discovered in proximity to Jeddah City in Saudi Arabia. Sampling of both sediment and sea water was performed at contrasting sites representative of near-shore with off-shore locations. Possible food-chain transference of any contaminates was evaluated by sampling fish (L.nebulosus) and plankton at the off-shore sites. Biomarkers are mostly useful in the evaluation of progressive diseases that apparent their symptoms long after exposure to the initiating factor. In such cases, traditional early warning symptoms of developing disease may be lacking. Thus, detection of earlier events can provide a valuable timely warning of risk. It is important to identify and address the growing environmental problems being faced by the community and address it before it takes the shape of an epidemic. To assess toxicity of single and paired metals to the nematode C. elegans, toxicity tests were designed to first determine the impact of single metal exposure Copper, Zinc and Aluminium and then nematodes were exposed to paired combinations. Exposures with paired metals showed a variety of interactions which ranged from antagonistic to synergistic effects.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Q Science (General) ; QR Microbiology