Use this URL to cite or link to this record in EThOS:
Title: Methods for measuring semantic similarity of texts
Author: Gaona, Miguel Angel Rios
ISNI:       0000 0004 5350 232X
Awarding Body: University of Wolverhampton
Current Institution: University of Wolverhampton
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Measuring semantic similarity is a task needed in many Natural Language Processing (NLP) applications. For example, in Machine Translation evaluation, semantic similarity is used to assess the quality of the machine translation output by measuring the degree of equivalence between a reference translation and the machine translation output. The problem of semantic similarity (Corley and Mihalcea, 2005) is de ned as measuring and recognising semantic relations between two texts. Semantic similarity covers di erent types of semantic relations, mainly bidirectional and directional. This thesis proposes new methods to address the limitations of existing work on both types of semantic relations. Recognising Textual Entailment (RTE) is a directional relation where a text T entails the hypothesis H (entailment pair) if the meaning of H can be inferred from the meaning of T (Dagan and Glickman, 2005; Dagan et al., 2013). Most of the RTE methods rely on machine learning algorithms. de Marne e et al. (2006) propose a multi-stage architecture where a rst stage determines an alignment between the T-H pairs to be followed by an entailment decision stage. A limitation of such approaches is that instead of recognising a non-entailment, an alignment that ts an optimisation criterion will be returned, but the alignment by itself is a poor predictor for iii non-entailment. We propose an RTE method following a multi-stage architecture, where both stages are based on semantic representations. Furthermore, instead of using simple similarity metrics to predict the entailment decision, we use a Markov Logic Network (MLN). The MLN is based on rich relational features extracted from the output of the predicate-argument alignment structures between T-H pairs. This MLN learns to reward pairs with similar predicates and similar arguments, and penalise pairs otherwise. The proposed methods show promising results. A source of errors was found to be the alignment step, which has low coverage. However, we show that when an alignment is found, the relational features improve the nal entailment decision. The task of Semantic Textual Similarity (STS) (Agirre et al., 2012) is de- ned as measuring the degree of bidirectional semantic equivalence between a pair of texts. The STS evaluation campaigns use datasets that consist of pairs of texts from NLP tasks such as Paraphrasing and Machine Translation evaluation. Methods for STS are commonly based on computing similarity metrics between the pair of sentences, where the similarity scores are used as features to train regression algorithms. Existing methods for STS achieve high performances over certain tasks, but poor results over others, particularly on unknown (surprise) tasks. Our solution to alleviate this unbalanced performances is to model STS in the context of Multi-task Learning using Gaussian Processes (MTL-GP) ( Alvarez et al., 2012) and state-of-the-art iv STS features ( Sari c et al., 2012). We show that the MTL-GP outperforms previous work on the same datasets.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Natural Language Processing ; Recognising Textual Entailment ; Semantic Textual Similarity