Use this URL to cite or link to this record in EThOS:
Title: Approach to study the brain : towards the early detection of neurodegenerative disease
Author: Howard, Newton
ISNI:       0000 0004 5346 4415
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Neurodegeneration is a progressive loss of neuron function or structure, including death of neurons, and occurs at many different levels of neuronal circuitry. In this thesis I discuss Parkinson’s Disease (PD), the second most common neurodegenerative disease (NDD). PD is a devastating progressive NDD often with delayed diagnosis due to detection methods that depend on the appearance of visible motor symptoms. By the time cardinal symptoms manifest, 60 to 80 percent or more of the dopamine-producing cells in the substantia nigra are irreversibly lost. Although there is currently no cure, earlier detection would be highly beneficial to manage treatment and track disease progression. However, today’s clinical diagnosis methods are limited to subjective evaluations and observation. Onset, symptoms and progression significantly vary from patient to patient across stages and subtypes that exceed the scope of a standardized diagnosis. The goal of this thesis is to provide the basis of a more general approach to study the brain, investigating early detection method for NDD with focus on PD. It details the preliminary development, testing and validation of tools and methods to objectively quantify and extrapolate motor and non-motor features of PD from behavioral and cognitive output during everyday life. Measures of interest are categorized within three domains: the motor system, cognitive function, and brain activity. This thesis describes the initial development of non-intrusive tools and methods to obtain high-resolution movement and speech data from everyday life and feasibility analysis of facial feature extraction and EEG for future integration. I tested and validated a body sensor system and wavelet analysis to measure complex movements and object interaction in everyday living situations. The sensor system was also tested for differentiating between healthy and impaired movements. Engineering and design criteria of the sensor system were tested for usability during everyday life. Cognitive processing was quantified during everyday living tasks with varying loaded conditions to test methods for measuring cognitive function. Everyday speech was analyzed for motor and non-motor correlations related to the severity of the disease. A neural oscillation detection (NOD) algorithm was tested in pain patients and facial expression was analyzed to measure both motor and non-motor aspects of PD. Results showed that the wearable sensor system can measure complex movements during everyday living tasks and demonstrates sensitivity to detect physiological differences between patients and controls. Preliminary engineering design supports clothing integration and development of a smartphone sensor platform for everyday use. Early results from loaded conditions suggest that attentional processing is most affected by cognitive demands and could be developed as a method to detect cognitive decline. Analysis of speech symptoms demonstrates a need to collect higher resolution spontaneous speech from everyday living to measure speech motor and non-motor speech features such as language content. Facial expression classifiers and the NOD algorithm indicated feasibility for future integration with additional validation in PD patients. Thus this thesis describes the initial development of tools and methods towards a more general approach to detecting PD. Measuring speech and movement during everyday life could provide a link between motor and cognitive domains to characterize the earliest detectable features of PD. The approach represents a departure from the current state of detection methods that use single data entities ( imaging procedures), which cannot be easily integrated with other data streams, are time consuming and economically costly. The long-term vision is to develop a non-invasive system to measure and integrate behavioral and cognitive features enabling early detection and progression tracking of degenerative disease.
Supervisor: Aziz, Tipu ; Stein, John Sponsor: U.S. Department of Defense ; IARPA ; Brain Sciences Foundation
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Surgery ; Neurology ; Old Age psychiatry ; Neuroscience ; Cognitive Neuroscience ; Computational Neuroscience ; Motor neurone degenerative disease ; Muscle & Nerve (Neuroscience) ; Neurogenetics ; Neuropathology ; Neuropsychology ; Theoretical Neuroscience ; Disease prevention ; Genetics (medical sciences) ; Geratology ; Organisation and evaluation of medical care ; Bioinformatics (life sciences) ; Medical Sciences