Use this URL to cite or link to this record in EThOS:
Title: Mechanics of swelling and damage in brain tissue : a theoretical approach
Author: Lang, Georgina E.
ISNI:       0000 0004 5366 7693
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Following trauma, such as an impact injury or stroke, brain tissue can swell. Swelling is the result of water accumulation in the tissue that is driven by pathological changes, such as increased permeability of the capillary walls and osmotic pressure changes within the tissue. Swelling causes increased intracranial pressure and mechanical deformation of the brain tissue, exacerbating the original injury. Furthermore, prolonged local swelling can lead to the spread of damage to the (initially undamaged) surrounding tissue, since compression and increased intracranial pressure may restrict blood flow in this tissue. In this thesis, we develop mathematical models to examine the consequences of pathophysiological damage mechanisms on the swelling, and associated stress and strain, experienced by brain tissue. Mixture theory is used to represent brain tissue as a mixture of elastic solid, fluid and solutes. This modelling approach allows elastic deformations to be coupled with hydrodynamic pressure and osmotic gradients; the consequences of different mechanisms of damage may then be quantified. We consider three particular problems motivated by experimental observations of swelling brain tissue. Firstly, we investigate the swelling of isolated, damaged, brain tissue slices; we show that mechanisms leading to an osmotic pressure difference between the tissue slice and its surroundings can explain experimental observations for swollen tissue slices. Secondly, we use our modelling approach to demonstrate that local changes in capillary permeability can cause significant stresses and strains in the surrounding tissue. Thirdly, we investigate the conditions under which a locally swollen, damaged, region can cause compression of the vasculature within the surrounding tissue, and potentially result in damage propagation. To do this, we propose a coupled model for the oxygen concentration within, and mechanical deformation of, brain tissue. We use our model to assess the impact of treatment strategies on damage propagation through the tissue, and show that performing a craniectomy reduces the extent of propagation.
Supervisor: Goriely, Alain; Vella, Dominic; Waters, Sarah L. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Mathematical biology ; Mechanics of deformable solids (mathematics) ; Biomechanics ; brain edema ; mixture theory ; soft tissue modelling