Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639882
Title: Al-Co-Ce glass forming alloys and their corrosion behaviour
Author: Li, Chunling
ISNI:       0000 0004 5365 8674
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
There is growing interest in Al-TM (transition metal)-RE (rare earth) amorphous alloys because of the combination of their good mechanical properties and corrosion resistance. However, the high critical cooling rate required to form the amorphous structure leads to difficulties in generating bulk amorphous material. Therefore, there has been greater interest in producing amorphous Al-TM-RE alloys as surface layers. In this study, wedge mould casting, laser surface melting (LSM) and large area electron beam (LAEB) surface melting were used to fabricate Al Co-Ce alloys in both crystalline and amorphous form. An eutectic Al 33Cu (wt.%) alloy was also used to quantify the solidification conditions based on the well-known relationship. The microstructures formed by different processes were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, image analysis and X ray and glancing angle X-ray diffraction. In particular, LAEB surface melting was found to be able to provide a sufficiently high solidification velocity for the generation of an amorphous layer on the remelted surface of bulk crystalline Al Co-Ce alloys. Experimental results show that the LAEB treatment can remelt, homogenise the multiphase crystalline starting material and generate a predominantly amorphous layer, although it also caused cracking of the treated layer. However, the cracking was largely reduced in the laser refined starting microstructure. Laser microstructural refinement also improved the homogenisation and amorphisation generated by the subsequent LAEB treatment. The temperature field of multi-pulse LAEB irradiated Al-Co-Ce and Al-Cu alloys was numerically simulated through a finite difference method. The simulation results were generally consistent with the experimental results. The corrosion behaviour of Al-Co-Ce alloys with different microstructures was studied through potentiodynamic polarisation tests. Al-Co-Ce amorphous layer exhibited an enhanced corrosion resistance compared to the crystalline counterpart, although cracking in the amorphous layer greatly influenced the effectiveness of the amorphous layer protecting the substrate.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.639882  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: