Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639873
Title: Aspects of galileons and generalised scalar-tensor theories
Author: Sivanesan, Vishagan
ISNI:       0000 0004 5365 7620
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis is devoted to the study of modified gravity theories, especially, the scalar-tensor theories. A theorem due to Weinberg which states, that the equivalence principle is a necessary consequence of Lorentz invariance in a gravitational theory described by spin-2 massless particles is presented in Chapter 2. In view of this theorem modified gravity models either attempt to make \textit{graviton} massive or add other spin degrees of freedom. Scalar tensor theories are a simple and natural choice. An overview of some important scalar-tensor theories such as, Brans-Dicke model, DGP theory (although not a scalar-tensor theory it reduces to one in the so called \textit{decoupling} limit as we would see in chapter 2), Galileon model, Horndeski theory is also given in Chapter 2. The Hamiltonian analysis of the Galileon model is presented in Chapter 3. Chapter 4 presents the boundary terms and junction conditions of the Horndeski theory in the presence of codimension-1 branes. A generalised multiple-scalar-tensor theory analogous to Horndeski theory is developed in Chapter 5. We conclude with the proof of the most general multiple scalar field theory in arbitrary dimensions and flat-space time in Chapter 6. Chapters 3,4,5,6 are original work where the first 3 are based on the following journal articles.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.639873  DOI: Not available
Keywords: QC170 Atomic physics. Constitution and properties of matter
Share: