Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639597
Title: Feature extraction to aid disease detection and assessment of disease progression in CT and MR colonography
Author: Hampshire, T. E.
ISNI:       0000 0004 5364 4571
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Computed tomographic colonography (CTC) is a technique employed to examine the whole colon for cancers and premalignant adenomas (polyps). Oral preparation is taken to fully cleanse the colon, and gas insufflation maximises the attenuation contrast between the enoluminal colon surface and the lumen. The procedure is performed routinely with the patient both prone and supine to redistribute gas and residue. This helps to differentiate fixed colonic pathology from mobile faecal residue and also helps discover pathology occluded by retained fluid or luminal collapse. Matching corresponding endoluminal surface locations with the patient in the prone and supine positions is therefore an essential aspect of interpretation by radiologists; however, interpretation can be difficult and time consuming due to the considerable colonic deformations that occur during repositioning. Hence, a method for automated registration has the potential to improve efficiency and diagnostic accuracy. I propose a novel method to establish correspondence between prone and supine CT colonography acquisitions automatically. The problem is first simplified by detecting haustral folds which are elongated ridgelike endoluminal structures and can be identified by curvature based measurements. These are subsequently matched using appearance based features, and their relative geometric relationships. It is shown that these matches can be used to find correspondence along the full length of the colon, but may also be used in conjunction with other registration methods to achieve a more robust and accurate result, explicitly addressing the problem of colonic collapse. The potential clinical value of this method has been assessed in an external clinical validation, and the application to follow-up CTC surveillance has been investigated. MRI has recently been applied as a tool to quantitatively evaluate the therapeutic response to therapy in patients with Crohn's disease, and is the preferred choice for repeated imaging. A primary biomarker for this evaluation is the measurement of variations of bowel wall thickness on changing from the active phase of the disease to remission; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. I propose a novel method which will automatically track sections of colon, by estimating the positions of elliptical cross sections. Subsequently, estimation of the positions of the inner and outer bowel walls are made based on image gradient information and therefore a thickness measurement value can be extracted.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.639597  DOI: Not available
Share: