Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638113
Title: Mechanistic studies of some chemical and biochemical reactions
Author: Mistry, Dharmit
ISNI:       0000 0004 5361 8090
Awarding Body: University of Huddersfield
Current Institution: University of Huddersfield
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Three aspects of chemical and biochemical reactions were investigated. 1. The relative reactivities of pyrophosphate (phosphorus(V)) and pyro-di-H-phosphonate (phosphorus(III)) and its derivatives have been analysed at various pHs. The hydrolysis rate of pyro-di-H-phosphonate (PP(III)) was found to be higher than pyrophosphate at all pHs. Using ITC and NMR, pyrophosphate showed metal-ion complexing abilities whereas pyro-di-H-phosphonate showed weak or no complexing to metal-ions, although the rate of hydrolysis at pH 7 slightly increased compared to the spontaneous hydrolysis of PP(III). The enzymatic hydrolysis of pyrophosphate, which is thought to occur via MgPP(V)2-, occurs efficiently and is close to being diffusion controlled. Pyro-di-H-phosphonate on the other hand does not act as a substrate or as an inhibitor of pyrophosphatase. 2. Dichloromethane (DCM) is an alkylating agent for pyridine, producing methylene bis-pyridinium dication (MDP) upon refluxing the solution. The kinetics and mechanism of hydrolysis of methylene bis-pyridinium dication have been studied. Below pH 7 MDP is extremely stable and hydrolysis is first-order in hydroxide-ion. Above pH 9 an unusual intermediate is formed on hydrolysis which has a chromophore at 366 nm in water and its formation is second-order in hydroxide-ion. The carbon acidity of the central methylene group was also investigated kinetically using H/D exchange and the pKa was surprisingly high at 21.2 at 25oC (I = 1.0 M). 3. Isothermal titration calorimetry (ITC) is a technique mainly used by biochemists to obtain a range of physical and thermodynamic properties of a reaction. Analysing the data can become difficult when investigating complex reactions involving more than one step, for instance metal-ions binding to an enzyme. In this work models have been developed to simulate sequential reactions. These were used to simulate experimental ITC data for metal-ions: Zn2+, Co2+ and Cd2+ complexing to the active sites of BcII, a metallo β-lactamase responsible for antibiotic resistance, providing additional information on the mechanism by which this enzyme acts to deactivate β-lactam antibiotics. The simulations suggest that BcII has two very similar binding affinities to metal-ions which are filled sequentially.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.638113  DOI: Not available
Keywords: Q Science (General) ; QD Chemistry
Share: