Use this URL to cite or link to this record in EThOS:
Title: Epistemologies of uncertainty : governing CO2 capture and storage science and technology
Author: Evar, Benjamin
ISNI:       0000 0003 6041 3301
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
This thesis progresses from a ‘science and technology studies’ (STS) perspective to consider the ways that expert stakeholders perceive and communicate uncertainties and risks attached to carbon dioxide (CO2) capture and storage (CCS) research and development, and how this compares with policy framings and regulatory requirements. The work largely falls within the constructivist tradition in sociology, but also draws on literature from the philosophy of science and policy-­‐oriented literature on risk and uncertainty. CCS describes a greenhouse gas (GHG) mitigation technology system that involves the capture, pressurisation, transportation, geological injection and long-­‐term storage of CO2 as an alternative to atmospheric emissions. Only few and relatively small applications exist at the moment and research efforts are on going in many countries. The case for developing CCS towards large-­‐scale, commercial deployment has largely been presented as follows since the mid-­‐ 1990s: climate change mitigation is the developed world’s historical responsibility and must be addressed urgently; chief amongst GHGs is CO2, which makes up more than three quarters of emissions; the vast majority of CO2 is emitted from the combustion and gasification of hydrocarbons – oil, gas and coal – for energy generation; transitioning away from these high-­‐CO2 primary energy sources will likely take several decades at the least; therefore, CO2 capture systems should be designed for power and industrial emissions in developed countries, as well as emerging economies where energy suppliers will continue to construct relatively cheap and well understood high-­‐CO2 generation plants. The development of large-­‐scale CO2 capture has thus arisen from a concern with engineering a technological system to address a CO2 legacy in the developed world, and a high-­‐CO2 trajectory in developing/emerging countries, rather than on the back of purely scientific curiosity. And the potential for large-­‐scale development has been presented on the back of a variety of scientific and technical evidence, as well as the urgency of the policy objective and related aims. Research activities, often concentrated around technology demonstration projects, are the primary focus of the first part of this thesis. In the second part I consider the extent to which research has shaped policy developments, and how regulations have subsequently informed a more detailed research agenda. I follow a ‘grounded theory’ methodology as developed by Glaser and Strauss (1967) and take additional guidance from Glaser’s (1992) response to Strauss’ later writings as well as Charmaz (2006) and Rennie (2000), and use a mix of qualitative and quantitative analytical methods to assess my data. These include information from 60 semi-­‐structured interviews with geoscientists and policy stakeholders; close readings of scientific publications, newspaper articles, policies and regulatory documents; statistical evidence from a small survey; quantitative analysis of newspaper articles; and social network analysis (SNA) of scientific co-­‐authorship networks. Theory is drawn from STS literature that has been appropriate to address case study materials across each of the 7 substantive chapters. The first section of the thesis considers expert claims, with a focus on geoscience research, and draws on literature from the closely related ‘social shaping of technology’ (SCOT) and ‘sociology of scientific knowledge’ (SSK) programmes, as well as Nancy Cartwright’s philosophy of science. The second half of the thesis draws on the ‘co-­‐production’ framework and Wynne’s (1992) terminology of risk and uncertainty, to assess relations between risk assessment and risk management practices for CCS. I likewise draw on literature from the ‘incrementalist’ tradition in STS to ask whether and how understandings of technology risk, governance and deployment could be improved. Each chapter presents new empirical material analysed with distinct reference to theories covered in the introduction. Chapter 2 provides a general overview of the history, technology, economics and key regulatory issues associated with CCS, which will be useful to assess the theoretically driven arguments in subsequent chapters. Chapter 3 draws on the concept of ‘interpretive flexibility’ (Pinch and Bijker 1984) to assess a range of expert perceptions about uncertainties in science, technology and policy, and I develop a substantive explanation, ‘conditional inevitability’, to account for an epistemic tension between expressions of certitude and the simultaneous acknowledgement of several uncertainties. Chapter 4 continues the enquiry into stakeholder perceptions and draws on Haas’ notion of ‘epistemic communities’ (Haas 1992) to assess geoscientists’ work practices. I complement this framing with a close look at how uncertainty is treated in simulation modelling and how conclusions about storage safety are formulated, by drawing on Nancy Cartwright’s philosophy of science (Cartwright 1999) and Paul Edwards’ account of complex system modelling for climate change (Edwards 2010). The chapter shows how shared understandings of adequate evidence and common analytical tools have been leveraged to present relatively bounded and simple conclusions about storage safety, while geoscientists nevertheless recognise a high degree of uncertainty and contingency in analyses and results. Chapter 5 continues the focus on knowledge production in the geosciences and is supported by SNA data of workflow patterns in the Sleipner demonstration project. The analysis shows how a few actors have had a pivotal role in developing insights related to storage safety particularly on the back of seismic monitoring and other data acquired through industry partnerships. I therefore continue the chapter with a deconstruction of how seismic data has been used to make a case for the safety of CO2 storage, again drawing on Cartwright and others (Glymour 1983) to explain how individual findings are ‘bootstrapped’ when conclusions are formulated. I show how a general case about storage safety has emerged on the back of seismic data from Sleipner as well as a shared understanding among geoscientists of how to account for uncertainties and arrive at probable explanations. Chapter 6 considers to what extent scientific research has given shape to, and in turn been shaped by, CCS policy and regulations in the EU, drawing on Wynne’s (1992) terminology of risk and uncertainty as well as legal scholarship (Heyvaert 2011). I conclude that a ‘rational-­‐instrumental’ interpretation of uncertainty and precaution has furnished a compartmentalised understanding of risk assessment and risk management practices. Chapter 7 continues to look at the ways that risk assessment methodologies influence risk management practices through a case study of the Mongstad CCS demonstration project in Norway. I draw on ‘incrementalist’ literature (Lindblom 1979; Woodhouse and Collingridge 1993) to consider alternative conceptualisations of technology development and risk management when expectations clash with scientific uncertainties and criticism. Chapter 8 draws on insights from across STS (Downs 1972; Collingridge and Reeve 1986; Wynne 1992) to create a novel conceptual model that accounts for recent years’ developments in CCS governance. Here I conclude that setbacks and criticisms should be expected when analyses have largely presented CCS as a technical problem rather than a socially contingent system. Following Stirling (2010) I conclude that scientists and policymakers should instead strive to present complexity in their analyses and to engage with wider publics (Yearley 2006) when technical analysis is inseparable from socially mediated indeterminacies (Wynne 1992), to increase the chance of more successful engagement practices (Wynne 2006). The conclusions at the end of the thesis seek to draw out interpretive and instrumental lessons learned throughout.
Supervisor: Shackley, Simon; Russell, Stewart; Lovell, Heather; Haszeldine, Stuart Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: science and technology studies ; carbon capture and storage