Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.637103
Title: Holographic point-of-care diagnostic devices
Author: Yetisen, Ali Kemal
ISNI:       0000 0004 5359 755X
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Developing non-invasive and accurate diagnostics that are easily manufactured, robust and reusable will provide monitoring of high-risk individuals in any clinical or point-of-care environment, particularly in the developing world. There is currently no rapid, low-cost and generic sensor fabrication technique capable of producing narrow-band, uniform, reversible colorimetric readouts with a high-tuneability range. This thesis aims to present a theoretical and experimental basis for the rapid fabrication, optimisation and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions. The sensing mechanism was computationally modelled to optimise its optical characteristics and predict the readouts. A single pulse of a laser (6 ns, 532 nm, 350 mJ) in holographic “Denisyuk” reflection mode allowed rapid production of sensors through silver-halide chemistry, in situ particle size reduction and photopolymerisation. The fabricated sensors consisted of off-axis Bragg diffraction gratings of ordered silver nanoparticles and localised refractive index changes in poly(2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 500-1100 nm. The application of the holographic sensors was demonstrated by sensing pH in artificial urine over the physiological range (4.5-9.0), with a sensitivity of 48 nm/pH unit between pH 5.0 and 6.0. For sensing metal cations, a porphyrin derivative was synthesised to act as the crosslinker, the light absorbing material, the component of a diffraction grating, as well as the cation chelating agent. The sensor allowed reversible quantification of Cu2+ and Fe2+ ions (50 mM - 1 M) with a response time within 50 s. Clinical trials of a glucose sensor in the urine samples of diabetic patients demonstrated that the glucose sensor has an improved performance compared to a commercial high-throughput urinalysis device. The experimental sensitivity of the glucose sensor exhibited a limit of detection of 90 µM, and permitted diagnosis of glucosuria up to 350 mM. The sensor response was achieved within 5 min and the sensor could be reused about 400 times without compromising its accuracy. Holographic sensors were also tested in flake form, and integrated with paper-iron oxide composites, dyed filter and chromatography papers, and nitrocellulose-based test strips. Finally, a generic smartphone application was developed and tested to quantify colorimetric tests for both Android and iOS operating systems. The developed sensing platform and the smartphone application have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.637103  DOI: Not available
Keywords: point-of-care diagnostics ; holographic sensors ; biosensors ; mobile medical apps ; hydrogels
Share: