Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636868
Title: Connectivity of Hurwitz spaces for L₂(7), L₂(11) and S₄
Author: Firkin, Adam
ISNI:       0000 0004 5359 5634
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2015
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
For a finite group G and collection of conjugacy classes C = (\(C\)\(_1\),…,\(C\)\(_r\)). The (inner) Hurwitz space, H\(^i\)\(^n\)(\(G\), C), is the space of Galois covers of the Riemann sphere with monodromy group isomorphic to \(G\) and ramification type C. Such a space may be parameterized point wise by tuples, g = (\(g\)\(_1\),…,\(g\)\(_r\)) of \(G\), known as Nielsen tuples, such that \(g\)\(_1\)…\(g\)\(_r\) = 1 and \(\langle\)\(g\)\(_1\),…,\(g\)\(_r\)\(\rangle\) generate \(G\). The action of the braid group upon these Nielsen tuples is in a one-to-one correspondence with the connected components of Hurwitz spaces. The aim of this thesis is to calculate the connected components of the Hurwitz space for the groups \(L\)\(_2\)(7), \(L\)\(_2\)(11) and \(S\)\(_4\) for any given type in the case of \(L\)\(_2\)(\(p\)) and a particular class of types for \(S\)\(_4\), using the method described. Furthermore, we establish that if two orbits exist we can distinguish these orbits via a lift invariant within the covering group \(SL\)\(_2\)(7) and \(SL\)\(_2\)(11) for \(L\)\(_2\)(7) and \(L\)\(_2\)(11) respectively, and any Schur cover for \(S\)\(_4\).
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.636868  DOI: Not available
Keywords: QA Mathematics
Share: