Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.635524
Title: De-risking Integrated Full Electric Propulsion (IFEP) vessels using advanced modelling and simulation techniques
Author: Schuddebeurs, Jeroen Daryanto
ISNI:       0000 0004 5357 0226
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Complex multi-domain engineering systems, where for example mechanical and thermal (sub)systems are connected to each other in some way, have increasingly become a vital part of our society. An example of such a system is the Integrated Full Electric Propulsion (IFEP) concept for the marine shipping industry. With this IFEP concept, as opposed to the more conventional marine power system, the power for the ship's propulsion and ship's services is provided by a common power plant. This offers advantages including fuel efficiency and design flexibility. However, due to its system complexity and capital costs, it is important that the overall dynamic behaviour of these systems can be predicted in the early stages of the design. Predicting the overall system behaviour can be obtained by employing an integrated end-to-end model, which combines detailed models of for example the mechanical and electrical (sub)systems. This allows for example ship designers to investigate disturbances and the primary and higher order responses across the system. However, present existing simulation tools do not easily facilitate such employment of a holistic approach. In this thesis the focus is on how advanced modelling and simulation techniques can be used to de-risk the design and in-service of complex IFEP systems. The state-of-the-art modelling and simulation techniques as well as the IFEP application area are considered. An integrated-model of an IFEP vessel was developed under the EPSRC collaborative AMEPS (Advanced Marine Electric Propulsion System) research project, which forms a major part of this thesis. In order to reduce the computational burden, due to a wide variety of time constants in the IFEP system, a multi-rate simulation technique was proposed. It was demonstrated that a reduction in simulation execution time between 10-15 times can be achieved. However it was conceptually argued that multi-rate simulation could introduce errors, which propagates itself across the system thereby provoking potential unrealistic responses from other subsystems. Several case studies were conducted based on this model, which shows that such an integrated end-to-end model may be a valuable decision-support tool for de-risking the design and in-service phases of IFEP vessels. For example, it was demonstrated that a disturbance on the propeller could provoke a saturation of the gas turbine governor. Different power system architectures were proposed for IFEP power systems such as radial and hybrid AC/DC. For this thesis, an initial study was conducted to assess the relationship between the type of power system architecture and the vessel survivability. For this assessment an existing vessel survivability theory was further developed into a quantitative method. It was concluded that based on a comparative short circuit study and the proposed survivability method that the IFEP-hybrid AC/DC architecture offers the best vessel survivability.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.635524  DOI: Not available
Share: