Use this URL to cite or link to this record in EThOS:
Title: The fission yeast non-coding transcriptome
Author: Atkinson, S. R.
ISNI:       0000 0004 5352 1643
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Long non-coding RNAs (lncRNAs) are emerging as important regulators of gene expression, although it remains unclear to what extent they contribute overall to the information flow from genotype to phenotype. Using strand-specific RNAsequencing, I identify thousands of novel unstable, or cryptic, lncRNAs in Schizosaccharomyces pombe. The nuclear exosome, the RNAi pathway and the cytoplasmic exonuclease Exo2 represent three key pathways regulating lncRNAs in S. pombe, defining the overlapping classes of CUTs, RUTs and XUTs, respectively. The nuclear exosome and the RNAi pathway act cooperatively to control nuclear lncRNA expression, while the cytoplasmic Exo2 pathway is more distinct. Impairing both the nuclear exosome and the cytoplasmic exonuclease Exo2 is lethal in S. pombe. Importantly, I show that CUTs, RUTs and XUTs are stabilised under physiologically relevant growth conditions, with three key groups emerging: late meiotic RUTs/XUTs, early meiotic CUTs and quiescent CUTs. Late meiotic RUTs/XUTs tend to be antisense to protein-coding genes, and anti-correlate in expression with their sense loci. In contrast, early meiotic and quiescent CUTs tend to be transcribed divergently from protein-coding genes and positively correlate in expression with their mRNA partners. The current study provides an in-depth survey of the lncRNA repertoire of S. pombe, and the pathways that regulate their expression. It seems likely that any regulatory functions mediated by most of these lncRNAs are in cis, nuclear and cotranscriptional. The current study provides a rich and comprehensive resource for future studies of lncRNA function.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available