Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.634680
Title: Realistic modelling of water/solid interfaces from ab initio molecular dynamics
Author: Tocci, G.
ISNI:       0000 0004 5352 0907
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Water/solid interfaces are of utmost importance to a number of technological processes. Theoretical studies, based on ab initio approaches are suitable to unveil processes occurring at water/solid interfaces and can therefore be instrumental to delineate guidelines to improve the efficiency of these processes. In this thesis we study several systems of current interest using ab initio methods based on density functional theory (DFT). By going often beyond the use of standard DFT methods and approximations we have provided insights into processes occurring at water/solid interfaces under ambient conditions and in non stoichiometric conditions. Specifically, we will investigate the interactions between water and ZnO, an important metal-oxide especially used in industry to produce methanol. One of the most mportant results of this study is that proton hopping is dramatically enhanced under wet conditions compared to ideal ultra-high vacuum conditions. Also, we will compute the friction between liquid water in contact with 2-D layered materials, and delineate the guidelines on how to alter the friction coe cient in membranes used for desalination or osmotic power harvesting. Finally, in collaboration with Geoff Thornton's group we have investigated the role of defects on the surface chemistry of the rutile TiO2(110), which is the model oxide surface used in photocatalysis applications. On the whole, in this work we have used ab initio methods to reduce the gap between the ultra-high vacuum-style studies of adsorption on perfect defect-free surfaces and the complex behaviour of liquid/solid interfaces under technologically relevant conditions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.634680  DOI: Not available
Share: