Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.634224
Title: Cross-layer design for scalable/3D wireless video transmission over IP networks
Author: Appuhami Ralalage, Harsha Nishantha Deepal
ISNI:       0000 0004 5349 7815
Awarding Body: Kingston University
Current Institution: Kingston University
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
The first two parts of the thesis address the issues related to 3D video transmission over wireless networks and proposes cross-layer design techniques to optimise the information exchange between dif- ferent Open Systems Interconnection (OSI) layers or system blocks. In particular, the first section of this thesis exploits the flexibility of adjusting the checksum coverage length of the transport layer pro- tocol, UDP-lite as opposed to its counterpart UDP. The study pro- poses an optimum checksum coverage length to protect only impor- tant header information of an H.264 encoded video transmission over wireless links, together with robust header compression (RoHC) and Automatic Retransmission Request (ARQ). The second part of the thesis investigates a content and Channel aware Medium Access Con- trol (MAC) layer scheduling algorithm by considering the layer prior- ities of an H.264 Scalable Video Coding (SVC) encoded 3D video transmission over an Orthogonal Frequency Division Multiple Ac- cess (OFDMA) based wireless link with a prioritised queuing tech- nique to improve the Quality of Experience (QoE) of the end users. A considerable amount of research time was devoted to investigat- ing accurate, consistent and real-time quality evaluation techniques for 3D image/ video as cross-layer design techniques mostly rely on the quality feedbacks from end users to optimise system parameters. The first quality metric proposed is a stereoscopic image quality met- ric using the disparity histogram of the left and right views. A 3D stereoscopic video quality evaluation technique is proposed, based on the predominant energy distribution of gradients using 3D structural tensors in the next section. Finally, a near no reference quality metric is proposed for colour plus depth 3D video compression and transmis- sion, using the extracted edge information of colour images and depth maps. The research investigates a number of error resilient transmission methods to combat artifacts in 3D video delivery over wireless chan- nels. A Region-of-Interest (ROI) based transmission method for stereo- scopic videos has been proposed to mark the important areas of the video and provide Unequal Error Protection (UEP) during transmis- sion. Next, we investigate the effects of compression and packet loss on the rendered video quality and propose a model to quantify ren- dering and concealment errors at the sender-side and then use the information generated through the model to effectively deliver 3D. Finally an asymmetric coding approach is suggested for 3D medical video transmitted over band limited wireless networks by considering large data rates associated with 3D medical video as they are usually captured in high resolution and pixel depth. Key words: 3D video transmission, Cross-layer design, Orthogonal frequency-division multiple access, H.264 video compression, Scalable video coding, Robust header compression, automatic retransmission request, Quality of experience, Prioritized 3D video transmission, Un- equal error protection.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.634224  DOI: Not available
Keywords: Computer science and informatics
Share: