Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633955
Title: Evolutionary ecology of reproductive strategies in malaria parasites
Author: Carter, Lucy Mary
ISNI:       0000 0004 5348 8038
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission via mosquitoes to occur, specialized sexual stages (gametocytes) must be produced. Once inside the mosquito vector, gametocytes immediately differentiate into male and female gametes, and motile male gametes must swim through the hostile environment of the bloodmeal to find and fertilise female gametes. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. Furthermore, surprisingly little is known about the mating behaviour of malaria parasites once inside the mosquito. Developing drugs and/or vaccines that prevent transmission by disrupting sexual stages are major goals of biomedicine, but understanding variation in gametocyte investment and male gamete behaviour is key to the success of any intervention. First, I propose that the evolutionary theory developed to explain variation in reproductive effort in multicellular organisms provides a framework to understand gametocyte investment strategies in malaria parasites. I then demonstrate that parasites appear to change their reproductive strategies in response to environmental cues and in a manner consistent with our predictions. Next, I show how digital holographic microscopy can be used to characterise the morphology and motility of male gametes. I then provide evidence for non-random movement of male gametes and that gamete interactions with red blood cells appear to hinder mating success in a bloodmeal. Finally, I discuss the variation in gametocyte differentiation and fertilisation success when exposed to a number of factors implicated in gametocyte activation. The data presented here provides important information on the basic biology of malaria parasite reproductive stages and demonstrates considerable variation in parasite traits and behaviours in response environmental changes; both in the host and in the mosquito vector.
Supervisor: Reece, Sarah; Schneider, Petra Sponsor: Natural Environment Research Council (NERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.633955  DOI: Not available
Keywords: gametocyte investment ; host-parasite interactions ; transmission ; phenotypic plasticity ; malaria parasite ; mosquito vector
Share: