Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633929
Title: Screening for genes involved in cilia formation and function
Author: Hall, Emma Andisi
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Cilia are small microtubule based structures found on the surface of almost all mammalian cells, enclosed in a highly specialised extension of the cell membrane. Components of several key developmental signalling pathways, in particular Hedgehog (Hh) signalling, are enriched in cilia and cells with mutations in cilia structure show aberrant signalling, suggesting cilia act as “antennae” to focus these signalling cascades. A spectrum of human diseases, termed ciliopathies, are caused by problems in cilia formation or cilia function, which display wide ranging phenotypes from embryonic lethality to retinal degeneration, polydactyly to cystic kidneys. Despite recent advances in the understanding of the essential roles cilia play in mammalian development, exactly how these complex structures are put together, how they carry out their diverse functions, and how they are regulated is not well understood. In this thesis, I describe a screen for genes involved in cilia formation and function. While optimising ciliogenesis and immunofluorescence protocols for the screen, the phenotypes of two ciliary mutant cell lines were analysed. Wdr35yet/yet and Dync2h1pol/pol mouse lines were identified in an ENU screen for genes involved in early development, and shown to have gross phenotypes similar to other ciliary mutants (Mill et al. 2011). Intraflagellar transport (IFT) is the active transport of proteins up and down the ciliary axoneme. Dync2h1 is a retrograde IFT motor component, whereas Wdr35 is part of the retrograde IFT-A complex. In this thesis, the cellular phenotypes of mouse embryonic fibroblasts derived from these mutants are described, showing that despite the fact both genes are thought to be involved in retrograde IFT, they show distinct ciliary phenotypes, suggesting novel roles for Wdr35 in mouse ciliogenesis. An siRNA screen was carried out in mouse fibroblasts to identify genes involved in (i) cilia formation, assayed by immunofluorescence for ciliary markers, and (ii) cilia function, assayed by activity of a Hh responsive luciferase transgene as an indirect readout of ciliary function. Although scalable, I initially screened a small test set of thirty-six putative cilia candidates, identified by cross species transcriptomic analysis. We identified several possible hits, many of which were in the ciliome database but also importantly, several genes with no known link to ciliogenesis. Repeats, correlation of phenotype to knockdown efficiencies and localisation studies validated two hits, Ccdc63 and Azi1. Ccdc63 is a novel coiled-coil gene with no previous link to ciliogenesis; the phenotype for this gene was analysed in real time using fluorescently tagged ciliary markers. A second hit, Azi1, was followed up in more detail. The reduction in ciliogenesis upon Azi1 knockdown was confirmed with separate siRNAs, and was rescued by overexpressing siRNA insensitive Azi1-GFP, confirming the phenotype is not due to off-target effects of the siRNAs. Azi1 gene trap mutant mice were generated and confirmed to be null mutations. Surprisingly, the mice survive, showing Azi1 is not essential for mammalian ciliogenesis. However, mutant males are infertile, with highly reduced sperm count and sperm abnormalities indicative of an arrest at Stage IX of spermiogenesis, when the flagellum, a highly specialised motile cilium, forms. The small number of sperm that do get to the epididymus are immotile. We suggest Azi1 is essential to in the formation of the sperm flagella and male fertility.
Supervisor: Jackson, Ian Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.633929  DOI: Not available
Keywords: cilia ; Azi1 ; RNAi ; RNA interference
Share: