Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633532
Title: Exploration of new methods involved for the synthesis of PET tracers
Author: Marie, Guillaume
ISNI:       0000 0004 5346 487X
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
This work describes the development and the optimisation of microfluidic radiolabelling by using an Eckert & Ziegler device remotely controlled by a computer to perform the multistep synthesis of [18F]-fluoro-2-deoxy-D-glucose ([18F]-FDG). This device was then modified to control the fluidic transfers via flow of nitrogen and vacuum with the aid of a new one-way cassette system by using different concentrations of water for the Kryptofix solution. A new route was also explored to perform florbetaben ([18F]-BAY94- 9172), a potent Alzheimer’s disease PET tracer. Chapter 1 is an overview of positron emission tomography techniques to synthesise tracers. Chapter 2 is a brief introduction of the PETIC centre (Wales), where the fluoride-18 was delivered to produce [18F]-FDG. Chapter 3 describes the reaction of the [K+⊂2.2.2]18F− complex on mannose triflate and the variety of products formed. The Eckert & Ziegler platform was furnished with a cassette module and a microfluidic tubing to perform the radiolabelling fluorination of mannose triflate to the tetraacetate [18F]-deoxy-D-glucose and [18F]-FDG. Chapter 4 is focused on the modifications on the Eckert & Ziegler modules by using 1-way cassettes to limit the use of mechanical valves. [18F]-FDG was synthesised via a semiautomated procedure by limiting the number of modules present in the hot cell. Chapter 5 is an investigation for the preparation of several triethylene glycol derivatives following the syntheses of Kryptofix [2.2.2]. The use of triethylene glycol chain will be essential for the synthesis of the Florbetaben precursor. The Chapter 6 is the exploration of a new synthetic route leading to the precursor of florbetaben.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.633532  DOI: Not available
Keywords: QD Chemistry
Share: