Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632623
Title: Investigation into yield and reliability enhancement of TSV-based three-dimensional integration circuits
Author: Zhao, Yi
ISNI:       0000 0004 5362 3885
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Three dimensional integrated circuits (3D ICs) have been acknowledged as a promising technology to overcome the interconnect delay bottleneck brought by continuous CMOS scaling. Recent research shows that through-silicon-vias (TSVs), which act as vertical links between layers, pose yield and reliability challenges for 3D design. This thesis presents three original contributions. The first contribution presents a grouping-based technique to improve the yield of 3D ICs under manufacturing TSV defects, where regular and redundant TSVs are partitioned into groups. In each group, signals can select good TSVs using rerouting multiplexers avoiding defective TSVs. Grouping ratio (regular to redundant TSVs in one group) has an impact on yield and hardware overhead. Mathematical probabilistic models are presented for yield analysis under the influence of independent and clustering defect distributions. Simulation results using MATLAB show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratio results in achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios. The second contribution presents an efficient online fault tolerance technique based on redundant TSVs, to detect TSV manufacturing defects and address thermal-induced reliability issue. The proposed technique accounts for both fault detection and recovery in the presence of three TSV defects: voids, delamination between TSV and landing pad, and TSV short-to-substrate. Simulations using HSPICE and ModelSim are carried out to validate fault detection and recovery. Results show that regular and redundant TSVs can be divided into groups to minimise area overhead without affecting the fault tolerance capability of the technique. Synthesis results using 130-nm design library show that 100% repair capability can be achieved with low area overhead (4% for the best case). The last contribution proposes a technique with joint consideration of temperature mitigation and fault tolerance without introducing additional redundant TSVs. This is achieved by reusing spare TSVs that are frequently deployed for improving yield and reliability in 3D ICs. The proposed technique consists of two steps: TSV determination step, which is for achieving optimal partition between regular and spare TSVs into groups; The second step is TSV placement, where temperature mitigation is targeted while optimizing total wirelength and routing difference. Simulation results show that using the proposed technique, 100% repair capability is achieved across all (five) benchmarks with an average temperature reduction of 75.2℃ (34.1%) (best case is 99.8℃ (58.5%)), while increasing wirelength by a small amount.
Supervisor: Al-Hashimi, Bashir Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.632623  DOI: Not available
Keywords: QA75 Electronic computers. Computer science
Share: