Use this URL to cite or link to this record in EThOS:
Title: Dirac fermions on rotating space-times
Author: Ambrus, Victor E.
ISNI:       0000 0004 5361 8998
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Quantum states of Dirac fermions at zero or finite temperature are investigated using the point-splitting method in Minkowski and anti-de Sitter space-times undergoing rotation about a fixed axis. In the Minkowski case, analytic expressions presented for the thermal expectation values (t.e.v.s) of the fermion condensate, parity violating neutrino current and stress-energy tensor show that thermal states diverge as the speed of light surface (SOL) is approached. The divergence is cured by enclosing the rotating system inside a cylinder located on or inside the SOL, on which spectral and MIT bag boundary conditions are considered. For anti-de Sitter space-time, renormalised vacuum expectation values are calculated using the Hadamard and Schwinger-de Witt methods. An analytic expression for the bi-spinor of parallel transport is presented, with which some analytic expressions for the t.e.v.s of the fermion condensate and stress-energy tensor are obtained. Rotating states are investigated and it is found that for small angular velocities Ω of the rotation, there is no SOL and the thermal states are regular everywhere on the space-time. However, if Ω is larger than the inverse radius of curvature of adS, an SOL forms and t.e.v.s diverge as inverse powers of the distance to it.
Supervisor: Winstanley, Elizabeth Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available